Question:

Why do magnets have adverse effects on electronic devices?

Answer:

Magnets are harmful mostly to the magnetic storage devices on your computer: Hard Drives, Floppy Drives, Flash Drives, and BIOS.

More Info:

Flash Computer hardware

In telecommunications and computing a machine-readable medium (automated data medium) is a medium capable of storing data in a format readable by a mechanical device (rather than by a human).

Examples of machine-readable media include magnetic media such as magnetic disks, cards, tapes, and drums, punched cards and paper tapes, optical disks, barcodes and magnetic ink characters.

Information science (or information studies) is an interdisciplinary field primarily concerned with the analysis, collection, classification, manipulation, storage, retrieval, movement, and dissemination of information. Practitioners within the field study the application and usage of knowledge in organizations, along with the interaction between people, organizations and any existing information systems, with the aim of creating, replacing, improving, or understanding information systems. Information science is often (mistakenly) considered a branch of computer science. However, it is actually a broad, interdisciplinary field, incorporating not only aspects of computer science, but often diverse fields such as archival science, cognitive science, commerce, communications, law, library science, museology, management, mathematics, philosophy, public policy, and the social sciences.

Information science should not be confused with information theory or library science. Information theory is the study of a particular mathematical concept of information, while library science is a field related to libraries which uses some of the principles of information science.

Electromagnetism Magnet

A USB flash drive is a data storage device that includes flash memory with an integrated Universal Serial Bus (USB) interface. USB flash drives are typically removable and rewritable, and physically much smaller than an optical disc. Most weigh less than 30 grams (1.1 oz). As of January 2013[update], drives of up to 512 gigabytes (GB) are available. A one-terabyte (TB) drive was unveiled at the 2013 Consumer Electronics Show and will be available during 2013. Storage capacities as large as 2 TB are planned, with steady improvements in size and price per capacity expected. Some allow up to 100,000 write/erase cycles, depending on the exact type of memory chip used, and a 10-year shelf storage time.

USB flash drives are often used for the same purposes for which floppy disks or CD-ROMs were used, i.e., for storage, back-up and transfer of computer files. They are smaller, faster, have thousands of times more capacity, and are more durable and reliable because they have no moving parts. Until about 2005, most desktop and laptop computers were supplied with floppy disk drives in addition to USB ports, but floppy disk drives have been abandoned due to their lower capacity compared to USB flash drives.

A solid-state drive (SSD) (also known as a solid-state disk or electronic disk, though it contains no actual "disk" of any kind, nor motors to "drive" the disks) is a data storage device using integrated circuit assemblies as memory to store data persistently. SSD technology uses electronic interfaces compatible with traditional block input/output (I/O) hard disk drives, thus permitting simple replacement in common applications. Also, new I/O interfaces like SATA Express are created to keep up with speed advancements in SSD technology.

SSDs have no moving mechanical components. This distinguishes them from traditional electromechanical magnetic disks such as hard disk drives (HDDs) or floppy disks, which contain spinning disks and movable read/write heads. Compared with electromechanical disks, SSDs are typically more resistant to physical shock, run silently, have lower access time, and less latency. However, while the price of SSDs has continued to decline in 2012, SSDs are still about 7 to 8 times more expensive per unit of storage than HDDs.

A floppy disk, or diskette, is a disk storage medium composed of a disk of thin and flexible magnetic storage medium, sealed in a rectangular plastic carrier lined with fabric that removes dust particles. Floppy disks are read and written by a floppy disk drive (FDD).

Floppy disks, initially as 8-inch (200 mm) media and later in 5.25-inch (133 mm) and 3.5-inch (90 mm) sizes, were a ubiquitous form of data storage and exchange from the mid-1970s well into the first decade of the 21st century.

A hard disk drive (HDD) is a data storage device used for storing and retrieving digital information using rapidly rotating disks (platters) coated with magnetic material. An HDD retains its data even when powered off. Data is read in a random-access manner, meaning individual blocks of data can be stored or retrieved in any order rather than sequentially. An HDD consists of one or more rigid ("hard") rapidly rotating disks (platters) with magnetic heads arranged on a moving actuator arm to read and write data to the surfaces.

Introduced by IBM in 1956, HDDs became the dominant secondary storage device for general purpose computers by the early 1960s. Continuously improved, HDDs have maintained this position into the modern era of servers and personal computers. More than 200 companies have produced HDD units, though most current units are manufactured by Seagate, Toshiba and Western Digital. Worldwide revenues for HDD shipments are expected to reach $33 billion in 2013, a decrease of approximately 12% from $37.8 billion in 2012.

A data storage device is a device for recording (storing) information (data). Recording can be done using virtually any form of energy, spanning from manual muscle power in handwriting, to acoustic vibrations in phonographic recording, to electromagnetic energy modulating magnetic tape and optical discs.

A storage device may hold information, process information, or both. A device that only holds information is a recording medium. Devices that process information (data storage equipment) may either access a separate portable (removable) recording medium or a permanent component to store and retrieve information.

The Zip drive is a medium-capacity removable disk storage system that was introduced by Iomega in late 1994. Originally, Zip disks launched with capacities of 100 MB, but later versions increased this to first 250 MB and then 750 MB.

The format became the most popular of the super-floppy type products which filled a niche in the late 1990s portable storage market. However it was never popular enough to replace the 3.5-inch floppy disk nor could ever match the storage size available on rewritable CDs and later rewritable DVDs. USB flash drives ultimately proved to be the better rewritable storage medium among the general public due to the near-ubiquity of USB ports on personal computers and soon after because of the far greater storage sizes offered. Zip drives fell out of favor for mass portable storage during the early 2000s. The Zip brand later covered internal and external CD writers known as Zip-650 or Zip-CD, which had no relation to the Zip drive.

A neodymium magnet (also known as NdFeB, NIB or Neo magnet), the most widely used type of rare-earth magnet, is a permanent magnet made from an alloy of neodymium, iron and boron to form the Nd2Fe14B tetragonal crystalline structure. Developed in 1982 by General Motors and Sumitomo Special Metals, neodymium magnets are the strongest type of permanent magnet made. They have replaced other types of magnet in the many applications in modern products that require strong permanent magnets, such as motors in cordless tools, hard disk drives and magnetic fasteners.

The tetragonal Nd2Fe14B crystal structure has exceptionally high uniaxial magnetocrystalline anisotropy (HA~7 teslas). This gives the compound the potential to have high coercivity (i.e., resistance to being demagnetized). The compound also has a high saturation magnetization (Js ~1.6 T or 16 kG) and typically 1.3 teslas. Therefore, as the maximum energy density is proportional to Js2, this magnetic phase has the potential for storing large amounts of magnetic energy (BHmax ~ 512 kJ/m3 or 64 MG·Oe), considerably more than samarium cobalt (SmCo) magnets, which were the first type of rare earth magnet to be commercialized. In practice, the magnetic properties of neodymium magnets depend on the alloy composition, microstructure, and manufacturing technique employed.

Technology Internet

Electronics deals with electrical circuits that involve active electrical components such as vacuum tubes, transistors, diodes and integrated circuits, and associated passive interconnection technologies. The nonlinear behaviour of active components and their ability to control electron flows makes amplification of weak signals possible and electronics is widely used in information processing, telecommunications, and signal processing. The ability of electronic devices to act as switches makes digital information processing possible. Interconnection technologies such as circuit boards, electronics packaging technology, and other varied forms of communication infrastructure complete circuit functionality and transform the mixed components into a regular working system.

Electronics is distinct from electrical and electro-mechanical science and technology, which deals with the generation, distribution, switching, storage, and conversion of electrical energy to and from other energy forms using wires, motors, generators, batteries, switches, relays, transformers, resistors, and other passive components. This distinction started around 1906 with the invention by Lee De Forest of the triode, which made electrical amplification of weak radio signals and audio signals possible with a non-mechanical device. Until 1950 this field was called "radio technology" because its principal application was the design and theory of radio transmitters, receivers, and vacuum tubes.

magnetic storage devices
News:


Related Websites:


Terms of service | About
9