Question:

Why do hurricanes move counter clockwise in the northern hemisphere?

Answer:

The reason is that the earth's rotation sets up an apparent force that pulls the winds to the right in the Northern Hemisphere.

More Info:

hurricanes Meteorology

Atmospheric physics
Atmospheric dynamics (category)

Weather (category) · (portal)

Orientation Physics

Earth's rotation is the rotation of the solid Earth around its own axis. The Earth rotates from the west towards the east. As viewed from the North Star or polestar Polaris, the Earth turns counter-clockwise.

The North Pole, also known as the Geographic North Pole or Terrestrial North Pole, is the point in the Northern Hemisphere where the Earth's axis of rotation meets its surface. This point is distinct from the Earth's North Magnetic Pole. The South Pole is the other point where the Earth's axis of rotation intersects its surface, in Antarctica.

Clockwise

A tropical cyclone is a rapidly-rotating storm system characterized by a low-pressure center, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain. Tropical cyclones typically form over large bodies of relatively warm water. They derive their energy from the evaporation of water from the ocean surface, which ultimately recondenses into clouds and rain when moist air rises and cools to saturation. This energy source differs from that of mid-latitude cyclonic storms, such as nor'easters and European windstorms, which are fueled primarily by horizontal temperature contrasts. The strong rotating winds of a tropical cyclone are a result of the (partial) conservation of angular momentum imparted by the Earth's rotation as air flows inwards toward the axis of rotation. As a result, they rarely form within 5° of the equator. Tropical cyclones are typically between 100 and 4,000 km (62 and 2,500 mi) in diameter.

The term "tropical" refers to the geographical origin of these systems, which usually form over the tropical oceans. The term "cyclone" refers to their cyclonic nature, with wind blowing counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. The opposite direction of circulation is due to the Coriolis force.

The four cardinal directions or cardinal points are the directions of north, east, south, and west, commonly denoted by their initials: N, E, S, W. East and west are at right angles to north and south, with east being in the clockwise direction of rotation from north and west being directly opposite east. Intermediate points between the four cardinal directions form the points of the compass. The intermediate (intercardinal, or ordinal) directions are northeast (NE), southeast (SE), southwest (SW), and northwest (NW). Further, the intermediate direction of every set of intercardinal and cardinal direction is called a secondary-intercardinal direction, the eight shortest points in the compass rose to the right, i.e. NNE, ENE, ESE, and so on.

On Earth, upright observers facing north will have south behind them, east on their right, and west on their left. Most devices and methods for orientation therefore operate by finding north first, although any other direction is equally valid, if it can be reliably located. Several of these devices and methods are described below.

Coordinates: 45.00000°N 0.00000°E / 45.00000; 0.00000 / 45°0′0″N 0°0′0″E

The Northern Hemisphere is the half of a planet that is north of its equator—the word hemisphere literally means “half sphere”. It is also that half of the celestial sphere north of the celestial equator.

North

In physics, the Coriolis effect is a deflection of moving objects when they are viewed in a rotating reference frame. In a reference frame with clockwise rotation, the deflection is to the left of the motion of the object; in one with counter-clockwise rotation, the deflection is to the right. Although recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

Newton's laws of motion describe the motion of an object in a (non-accelerating) inertial frame of reference. When Newton's laws are transformed to a uniformly rotating frame of reference, the Coriolis and centrifugal forces appear. Both forces are proportional to the mass of the object. The Coriolis force is proportional to the rotation rate and the centrifugal force is proportional to its square. The Coriolis force acts in a direction perpendicular to the rotation axis and to the velocity of the body in the rotating frame and is proportional to the object's speed in the rotating frame. The centrifugal force acts outwards in the radial direction and is proportional to the distance of the body from the axis of the rotating frame. These additional forces are termed inertial forces, fictitious forces or pseudo forces. They allow the application of Newton's laws to a rotating system. They are correction factors that do not exist in a non-accelerating or inertial reference frame.

Cyclone Environment

A disaster is a natural or man-made (or technological) hazard resulting in an event of substantial extent causing significant physical damage or destruction, loss of life, or drastic change to the environment. A disaster can be ostensively defined as any tragic event stemming from events such as earthquakes, floods, catastrophic accidents, fires, or explosions. It is a phenomenon that can cause damage to life and property and destroy the economic, social and cultural life of people.

In contemporary academia, disasters are seen as the consequence of inappropriately managed risk. These risks are the product of a combination of both hazard/s and vulnerability. Hazards that strike in areas with low vulnerability will never become disasters, as is the case in uninhabited regions.

News:


Related Websites:


Terms of service | About
85