Question:

Who discovered the element Palladium?

Answer:

Palladium was discovered along with rhodium in 1803 by English chemist William Hyde Wollaston (1766-1828). AnswerParty again soon!

More Info:

William Hyde Wollaston PRS (6 August 1766 – 22 December 1828) was an English chemist and physicist who is famous for discovering two chemical elements; he also developed a way to process platinum ore into malleable ingots.

Wollaston was born in East Dereham, Norfolk, the son of the priest-astronomer Francis Wollaston (1737–1815) and his wife Althea Hyde. The family, which included 17 children, was financially well-off and were part of an intellectually stimulating environment. Wollaston was educated at Gonville and Caius College, Cambridge: in 1793 he obtained a doctorate in medicine from Cambridge University, and was a fellow of his college from 1787 to 1828.

chemist

In chemistry, the term transition metal (or transition element) has two possible meanings:

Jensen reviews the history of the terms "transition element" (or "metal") and "d-block". The word transition was first used to describe the elements now known as the d-block by the English chemist Charles Bury in 1921, who referred to a transition series of elements during the change of an inner layer of electrons (for example n=3 in the 4th row of the periodic table) from a stable group of 8 to one of 18, or from 18 to 32.

The noble metals are metals that are resistant to corrosion and oxidation in moist air, unlike most base metals. They tend to be precious, often due to their rarity in the Earth's crust. The noble metals are most commonly considered to be ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold.

Other sources include mercury, rhenium or copper as a noble metal. On the other hand, titanium, niobium, and tantalum are not included as noble metals, although they especially resist corrosion. Noble metals should not be confused with precious metals (although many noble metals have high value).

A precious metal is a rare, naturally occurring metallic chemical element of high economic value. Chemically, the precious metals are less reactive than most elements. They are usually ductile and have a high lustre. Historically, precious metals were important as currency but are now regarded mainly as investment and industrial commodities. Gold, silver, platinum, and palladium each have an ISO 4217 currency code.

The best-known precious metals are the coinage metals, gold and silver. While both have industrial uses, they are better known for their uses in art, jewellery and coinage. Other precious metals include the platinum group metals: ruthenium, rhodium, palladium, osmium, iridium, and platinum, of which platinum is the most widely traded.

The Royal Society of London for Improving Natural Knowledge, commonly known as the Royal Society, is a learned society for science, and is possibly the oldest such society still in existence. Founded in November 1660, it was granted a Royal Charter by King Charles II as the "Royal Society of London". The Society today acts as a scientific advisor to the British government, receiving a parliamentary grant-in-aid. The Society acts as the UK's Academy of Sciences, and funds research fellowships and scientific start-up companies.

The Society is governed by its Council, which is chaired by the Society's President, according to a set of Statutes and Standing Orders. The members of Council and the President are elected from and by its Fellows, the basic members of the Society, who are themselves elected by existing Fellows. There are currently 1,314 Fellows, allowed to use the postnominal title FRS (Fellow of the Royal Society), with 44 new Fellows appointed each year. There are also Royal Fellows, Honorary Fellows and Foreign Members, the last of which are allowed to use their postnominal title ForMemRS (Foreign Member of the Royal Society). The current Royal Society President is Sir Paul Nurse, who took up the position on 30 November 2010.

William Hyde Wollaston PRS (6 August 1766 – 22 December 1828) was an English chemist and physicist who is famous for discovering two chemical elements; he also developed a way to process platinum ore into malleable ingots.

Wollaston was born in East Dereham, Norfolk, the son of the priest-astronomer Francis Wollaston (1737–1815) and his wife Althea Hyde. The family, which included 17 children, was financially well-off and were part of an intellectually stimulating environment. Wollaston was educated at Gonville and Caius College, Cambridge: in 1793 he obtained a doctorate in medicine from Cambridge University, and was a fellow of his college from 1787 to 1828.

Palladium

Rhodium is a chemical element that is a rare, silvery-white, hard, and chemically inert transition metal and a member of the platinum group. It has the chemical symbol Rh and atomic number 45. It is composed of only one naturally-occurring isotope, 103Rh. Naturally occurring rhodium is usually found as the free metal, alloyed with similar metals, and rarely as a chemical compound in minerals such as bowieite and rhodplumsite. It is one of the rarest and most valuable precious metals.

Rhodium is a so-called noble metal, resistant to corrosion, found in platinum- or nickel ores together with the other members of the platinum group metals. It was discovered in 1803 by William Hyde Wollaston in one such ore, and named for the rose color of one of its chlorine compounds, produced after it reacted with the powerful acid mixture aqua regia.

Wollaston Science Matter Chemistry

A chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, which is the number of protons in its nucleus. Elements are divided into metals, metalloids, and non-metals. Familiar examples of elements include carbon, oxygen (non-metals), silicon, arsenic (metalloids), aluminium, iron, copper, gold, mercury, and lead (metals).

The lightest chemical elements, including hydrogen, helium (and smaller amounts of lithium, beryllium and boron), are thought to have been produced by various cosmic processes during the Big Bang and cosmic-ray spallation. Production of heavier elements, from carbon to the very heaviest elements, proceeded by stellar nucleosynthesis, and these were made available for later solar system and planetary formation by planetary nebulae and supernovae, which blast these elements into space. The high abundance of oxygen, silicon, and iron on Earth reflects their common production in such stars, after the lighter gaseous elements and their compounds have been subtracted. While most elements are generally viewed as stable, a small amount of natural transformation of one element to another also occurs at the present time through decay of radioactive elements as well as other natural nuclear processes.

Hospitality Recreation
News:


Related Websites:


Terms of service | About
12