When you break your ankle does your whole foot swell?


Yes, depending on the location of the break, a broken ankle can cause you entire foot to swell up. If an ankle fracture is suspected you should see your doctor or go to the emergency room.

More Info:

Jones fracture
A Jones fracture is a fracture of the diaphysis of the fifth metatarsal of the foot. The fifth metatarsal is at the base of the small toe. The proximal end, where the Jones fracture occurs, is in the midportion of the foot. Patients who sustain a Jones fracture have pain over this area, swelling, and difficulty walking. The fracture was first described by British orthopedic surgeon Sir Robert Jones (who sustained this injury himself while dancing) in the Annals of Surgery in 1902. A patient with a Jones fracture may not realize that it is a fracture, and could mistake it for a sprain. The diagnosis is made with general diagnostic x-rays. These need to be taken from anteroposterior, oblique, and lateral views. They should be made with the foot in full flexion. If a Jones fracture is not significantly displaced, it can be treated with a cast, splint or walking boot for four to eight weeks. Patients should not place weight on the foot until instructed by their doctor. Three-fourths of fractures treated like this should heal. In the case of acute fracture in an athlete, a dynamic compression plate can be placed on the tension side of the fracture, K-Wire with monofilament wire in a figure 8 fashion due to the nature of a transverse fracture. Internal fixation with cortical or cancellous screw would require an oblique fracture that could be addressed through "The rule of 2's" in regards to Internal fixation with screws. Other treatments commonly encouraged are increased intake of vitamin D and calcium. This injury must be differentiated from the physiologic developmental apophysis commonly and normally occurring at this site in adolescents. Differentiation is possible by characteristics such as absence of sclerosis of the fractured edges (in acute cases) and orientation of the lucent line: transverse (at 90 degrees) to the metatarsal axis for the fracture (due to avulsion pull by the peroneus brevis muscle inserting at the proximal tip) - and parallel to the metatarsal axis in the case of the apophysis. If a Jones fracture fails to unite (malunion or non union), which is a common problem with these fractures, it can become a chronic condition. If this is the case, podiatrists will likely recommend that the patient spend more time in a cast, up to twenty weeks. For several reasons, a Jones fracture often does not heal. The diaphyseal bone, where the fracture occurs, is an area of poor blood supply. In medical terms, it is a watershed area between two blood supplies. This makes healing difficult. In addition, there are various tendons, including the peroneus brevis and fibularis tertius, and two small muscles attached to the bone. These may pull the fracture apart and prevent healing. Other proximal fifth metatarsal fractures exist, although they are not as severe as a Jones fracture. If the fracture enters the intermetatarsal joint, it is a Jones fracture. If, however, it enters the tarsometarsal joint, then it is an avulsion fracture caused by pull from the peroneus brevis. An avulsion fracture is sometimes called a Pseudo-Jones fracture or a Dancer's fracture. M: BON/CAR anat (c/f/k/f, u, t/p, l)/phys/devp/cell noco/cong/tumr, sysi/epon, injr proc, drug (M5) M: TTH anat/devp/phys noco/cong/jaws/tumr, epon, injr dent, proc (endo, orth, pros)

The ankle, or talocrural region, is the region where the foot and the leg meet. The ankle includes three joints: the ankle joint proper or talocrural joint, the subtalar joint, and the Inferior tibiofibular joint. The movements produced at this joint are dorsiflexion and plantaflexion of the foot. In common usage, the term ankle refers exclusively to the ankle region. In medical terminology, "ankle" (without qualifiers) can refer broadly to the region or specifically to the talocrural joint. The main bones of the ankle region are the talus (in the foot), and the tibia and fibula (in the leg). The talus is also called the ankle bone. The talocrural joint, is a synovial hinge joint that connects the distal ends of the tibia and fibula in the lower limb with the proximal end of the talus. The articulation between the tibia and the talus bears more weight than between the smaller fibula and the talus. The word ankle or ancle is common, in various forms, to Germanic languages, probably connected in origin with the Latin "angulus", or Greek "αγκυλος", meaning bent. It has been suggested that dexterous control of toes has been lost in favour of a more precise voluntary control of the ankle joint. The boney architecture of the ankle consists of three bones: the tibia, the fibula, and the talus. The articular surface of the tibia is referred to as the plafond. The medial malleolus is a boney process extending distally off the medial tibia. The distal-most aspect of the fibula is called the lateral malleolus. Together, the malleoli, along with their supporting ligaments, stabilize the talus underneath the tibia. The boney arch formed by the tibial plafond and the two malleoli is referred to as the ankle "mortise" (or talar mortise). The mortise is a rectangular socket. The ankle is composed of three joints: the talocrural joint (also called tibiotalar joint, talar mortise, talar joint), the subtalar joint (also called talocalcaneal), and the Inferior tibiofibular joint. The joint surface of all bones in the ankle are covered with articular cartilage. The ankle joint is bound by the strong deltoid ligament and three lateral ligaments: the anterior talofibular ligament, the posterior talofibular ligament, and the calcaneofibular ligament. Though it does not span across the ankle joint itself, the syndesmotic ligament makes an important contribution to the stability of the ankle. This ligament spans the syndesmosis, which is the term for the articulation between the medial aspect of the distal fibula and the lateral aspect of the distal tibia. An isolated injury to this ligament is often called a high ankle sprain. The boney architecture of the ankle joint is most stable in dorsiflexion. Thus, a sprained ankle is more likely to occur when the ankle is plantar-flexed, as ligamentous support is more important in this position. The classic ankle sprain involves the anterior talofibular ligament (ATFL), which is also the most commonly injured ligament during inversion sprains. Another ligament that can be injured in a severe ankle sprain is the calcaneofibular ligament. Mechanoreceptors of the ankle send proprioceptive, sensory input to the central nervous system (CNS). Muscle spindles are thought to be the main type of mechanoreceptor responsible for proprioceptive attributes from the ankle. The muscle spindle gives feedback to the CNS system on the current length of the muscle it innervates and to any change in length that occurs. It was hypothesized that muscle spindle feedback from the ankle dorsiflexors played the most substantial role in proprioception relative to other muscular receptors that cross at the ankle joint. However, due to the multi-planar range of motion at the ankle joint there is not one group of muscles that is responsible for this. This helps to explain the relationship between the ankle and balance. In 2011, a relationship between proprioception of the ankle and balance performance was seen at in the CNS. This was done by using a fMRI machine in order to see the changes in brain activity when the receptors of the ankle are stimulated. This implicates the ankle directly with the ability to balance. Further research is needed in order to see to what extent does the ankle affect balance. Symptoms of an ankle fracture can be similar to those of ankle sprains (pain), though typically they are often more severe by comparison. It is exceedingly rare for the ankle joint to dislocate in the presence of ligamentous injury alone. The talus is most commonly fractured by two methods. The first is hyperdorsiflexion, where the neck of the talus is forced against the tibia and fractures. The second is jumping from a height - the body is fractured as the talus transmits the force from the foot to the lower limb bones. In the setting of an ankle fracture the talus can become unstable and subluxate or dislocate. People may complain of ecchymosis (bruising), or there may be an abnormal position, abnormal motion, or lack of motion. Diagnosis is typically by X-ray. Treatment is either via surgery or casting depending on the fracture types. Dorsum of Foot. Ankle joint. Deep dissection Dorsum of Foot. Ankle joint. Deep dissection Ankle joint. Deep dissection. Anterior view. Dorsum of Foot. Ankle joint. Deep dissection Media related to Ankle at Wikimedia Commons
M: JNT anat (h/c, u, t, l)/phys noco (arth/defr/back/soft)/cong, sysi/epon, injr proc, drug (M01C, M4)

A sprain is an injury in a joint, caused by the ligament being stretched beyond its own capacity. A muscular tear caused in the same manner is referred to as a strain. In cases where either ligament or muscle tissue is torn, immobilization and surgical repair may be necessary. Ligaments are tough, fibrous tissues that connect bones to other bones. Sprains can occur in any joint but are most common in the ankle and wrist. The diagnosis of a sprain injury is made by a physical examination. In most cases an x-ray (or stress x-ray) of the affected joint is obtained to ensure that there are no fractures. If a tear in the ligament is suspected, then an MRI or arthroscopy is obtained. MRI is usually ordered after swelling has subsided and can readily identify the presence of a ligament injury. Sprains typically occur when the joint is overextended. This can cause over stretching of the joints, tear or slipping of the ligament. Although any joint can experience a sprain, some of the more common include: There are certain factors which increase risk of sprains. Fatigue of muscles generally leads to sprains. When one suddenly starts to exercise after a sedentary lifestyle, sprains are quite common. While scientific studies are lacking, it is often thought that not warming-up is a common cause of sprains in athletes. Warming-up is thought to loosen the joint, increases blood flow and makes the joint more flexible. Diagnosis of sprains is not difficult but in most cases X-rays are obtained to ensure that there is no fracture. In many cases, if the injury is prolonged, magnetic resonance imaging (MRI) is performed to look at surrounding soft tissues and the ligament. The first modality for a sprain can be remembered using the acronym RICE. The treatment of sprains depends on the extent of injury and the joint involved. Medications like non-steroidal anti-inflammatory drugs can relieve pain. Weight bearing should be gradual and advanced as tolerated. Ice and compression (cold compression therapy) will not completely stop swelling and pain, but will help to minimize them as the sprain begins to heal itself. Careful management of swelling is critical to the healing process as additional fluid may pool in the sprained area. The joint should be exercised again fairly soon, in milder cases from 1 to 3 days after injury. Special exercises are sometimes needed in order to regain strength and help reduce the risk of ongoing problems. The joint may need to be supported by taping or bracing, helping protect it from re-injury. Prolonged immobilization delays the healing of a sprain, as it usually leads to muscle atrophy and stiff joint. The components of an effective rehabilitation for all sprain injuries include increasing range of motion and progressive muscle strengthening exercise. These should be taken care of without delay. M: JNT anat (h/c, u, t, l)/phys noco (arth/defr/back/soft)/cong, sysi/epon, injr proc, drug (M01C, M4) M: MUS, DF+DRCT anat (h/n, u, t/d, a/p, l)/phys/devp/hist noco (m, s, c)/cong (d)/tumr, sysi/epon, injr proc, drug (M1A/3)

Bone fracture
A bone fracture (sometimes abbreviated FRX or Fx, Fx, or #) is a medical condition in which there is a break in the continuity of the bone. A bone fracture can be the result of high force impact or stress, or trivial injury as a result of certain medical conditions that weaken the bones, such as osteoporosis, bone cancer, or osteogenesis imperfecta, where the fracture is then properly termed a pathologic fracture. Although broken bone and bone break are common colloquialisms for a bone fracture, break is not a formal orthopedic term. Although bone tissue itself contains no nociceptors, bone fracture is painful for several reasons: Damage to adjacent structures such as nerves or vessels, spinal cord and nerve roots (for spine fractures), or cranial contents (for skull fractures) can cause other specific signs and symptoms. The natural process of healing a fracture starts when the injured bone and surrounding tissues bleed, forming a fracture hematoma. The blood coagulates to form a blood clot situated between the broken fragments. Within a few days blood vessels grow into the jelly-like matrix of the blood clot. The new blood vessels bring phagocytes to the area, which gradually remove the non-viable material. The blood vessels also bring fibroblasts in the walls of the vessels and these multiply and produce collagen fibres. In this way the blood clot is replaced by a matrix of collagen. Collagen's rubbery consistency allows bone fragments to move only a small amount unless severe or persistent force is applied. At this stage, some of the fibroblasts begin to lay down bone matrix in the form of collagen monomers. These monomers spontaneously assemble to form the bone matrix, for which bone crystals (calcium hydroxyapatite) are deposited in amongst, in the form of insoluble crystals. This mineralization of the collagen matrix stiffens it and transforms it into bone. In fact, bone is a mineralized collagen matrix; if the mineral is dissolved out of bone, it becomes rubbery. Healing bone callus is on average sufficiently mineralized to show up on X-ray within 6 weeks in adults and less in children. This initial "woven" bone does not have the strong mechanical properties of mature bone. By a process of remodeling, the woven bone is replaced by mature "lamellar" bone. The whole process can take up to 18 months, but in adults the strength of the healing bone is usually 80% of normal by 3 months after the injury. Several factors can help or hinder the bone healing process. For example, any form of nicotine hinders the process of bone healing, and adequate nutrition (including calcium intake) will help the bone healing process. Weight-bearing stress on bone, after the bone has healed sufficiently to bear the weight, also builds bone strength. Although there are theoretical concerns about NSAIDs slowing the rate of healing, there is not enough evidence to warrant withholding the use of this type analgesic in simple fractures. Smokers generally have lower bone density than non-smokers, so have a much higher risk of fractures. There is also evidence that smoking delays bone healing. Some research indicates, for example, that it delays tibial shaft fracture healing from a median healing time of 136 to a median healing time of 269 days. This means that the fracture healing time was approximately doubled in smokers. Although some other studies show less extreme effects, it is still shown that smoking delays fracture healing. A bone fracture can be diagnosed clinically based on the history given and the physical examination performed. Imaging by X-ray is often performed to view the bone suspected of being fractured. In situations where x-ray alone is insufficient, a computed tomograph (CT scan) or MRI may be performed. In orthopedic medicine, fractures are classified in various ways. Historically they are named after the doctor who first described the fracture conditions. However, there are more systematic classifications in place currently. All fractures can be broadly described as: Other considerations in fracture care are displacement (fracture gap) and angulation. If angulation or displacement is large, reduction (manipulation) of the bone may be required and, in adults, frequently requires surgical care. These injuries may take longer to heal than injuries without displacement or angulation. Other types of fracture are: An anatomical classification may begin with specifying the involved body part, such as the head or arm, followed with more specific localization. Fractures that have additional definition criteria than merely localization can often be classified as subtypes of fractures that merely are, such as a Holstein-Lewis fracture being a subtype of a humerus fracture. However, most typical examples in an orthopedic classification given in previous section cannot appropriately be classified into any specific part of an anatomical classification, as they may apply to multiple anatomical fracture sites. The Orthopaedic Trauma Association, an association for orthopaedic surgeons, adopted and then extended the classification of Müller and the AO foundation ("The Comprehensive Classification of the Long Bones") an elaborate classification system to describe the injury accurately and guide treatment. There are five parts to the code: (1) Humerus fracture, (2) Radius fracture/Ulnar fracture, (3) Femoral fracture, (4) Tibial fracture/Fibular fracture, (5) Spinal fracture, (6) Pelvic fracture, (24) Carpal fracture, (25) Metacarpal fracture, (26) Phalanx fracture of the hand, (72) Talus fracture, (73) Calcaneus fracture, (74) Navicular fracture, (75) Cuneiform bone fracture, (76) Cuboid bone fracture, (80) LisFranc fracture, (81) Metatarsal fracture, (82) Phalanx fracture of the foot, (45) Patella fracture, (06) Clavicular fracture, (09) Scapular fracture There are other systems used to classify different types of bone fractures: Treatment of bone fractures are broadly classified as surgical or conservative, the latter basically referring to any non-surgical procedure, such as pain management, immobilization or other non-surgical stabilization. A similar classification is open versus closed treatment, in which open treatment refers to any treatment in which the fracture site is surgically opened, regardless of whether the fracture itself is an open or closed fracture. In arm fractures in children, ibuprofen has been found to be equally effective as the combination of acetaminophen and codeine. Since bone healing is a natural process which will most often occur, fracture treatment aims to ensure the best possible function of the injured part after healing. Bone fractures are typically treated by restoring the fractured pieces of bone to their natural positions (if necessary), and maintaining those positions while the bone heals. Often, aligning the bone, called reduction, in good position and verifying the improved alignment with an X-ray is all that is needed. This process is extremely painful without anesthesia, about as painful as breaking the bone itself. To this end, a fractured limb is usually immobilized with a plaster or fiberglass cast or splint which holds the bones in position and immobilizes the joints above and below the fracture. When the initial post-fracture edema or swelling goes down, the fracture may be placed in a removable brace or orthosis. If being treated with surgery, surgical nails, screws, plates and wires are used to hold the fractured bone together more directly. Alternatively, fractured bones may be treated by the Ilizarov method which is a form of external fixator. Occasionally smaller bones, such as phalanges of the toes and fingers, may be treated without the cast, by buddy wrapping them, which serves a similar function to making a cast. By allowing only limited movement, fixation helps preserve anatomical alignment while enabling callus formation, towards the target of achieving union. Splinting results in the same outcome as casting in children who have a distal radius fracture with little shifting. Surgical methods of treating fractures have their own risks and benefits, but usually surgery is done only if conservative treatment has failed, is very likely to fail, or likely to result in a poor functional outcome. With some fractures such as hip fractures (usually caused by osteoporosis), surgery is offered routinely because non-operative treatment results in prolonged immobilisation, which commonly results in complications including chest infections, pressure sores, deconditioning, deep vein thrombosis (DVT) and pulmonary embolism, which are more dangerous than surgery. When a joint surface is damaged by a fracture, surgery is also commonly recommended to make an accurate anatomical reduction and restore the smoothness of the joint. Infection is especially dangerous in bones, due to the recrudescent nature of bone infections. Bone tissue is predominantly extracellular matrix, rather than living cells, and the few blood vessels needed to support this low metabolism are only able to bring a limited number of immune cells to an injury to fight infection. For this reason, open fractures and osteotomies call for very careful antiseptic procedures and prophylactic antibiotics. Occasionally bone grafting is used to treat a fracture. Sometimes bones are reinforced with metal. These implants must be designed and installed with care. Stress shielding occurs when plates or screws carry too large of a portion of the bone's load, causing atrophy. This problem is reduced, but not eliminated, by the use of low-modulus materials, including titanium and its alloys. The heat generated by the friction of installing hardware can easily accumulate and damage bone tissue, reducing the strength of the connections. If dissimilar metals are installed in contact with one another (i.e., a titanium plate with cobalt-chromium alloy or stainless steel screws), galvanic corrosion will result. The metal ions produced can damage the bone locally and may cause systemic effects as well. Electrical bone growth stimulation or osteostimulation has been attempted to speed or improve bone healing. Results however do not support its effectiveness. Some fractures can lead to serious complications including a condition known as compartment syndrome. If not treated, compartment syndrome can eventually require amputation of the affected limb. Other complications may include non-union, where the fractured bone fails to heal or mal-union, where the fractured bone heals in a deformed manner. Complications of fractures can be classified into three broad groups depending upon their time of occurrence. These are as follows -
In children, whose bones are still developing, there are risks of either a growth plate injury or a greenstick fracture. M: BON/CAR anat (c/f/k/f, u, t/p, l)/phys/devp/cell noco/cong/tumr, sysi/epon, injr proc, drug (M5) M: TTH anat/devp/phys noco/cong/jaws/tumr, epon, injr dent, proc (endo, orth, pros)

Talus bone
The talus bone (Latin for ankle), astragalus or ankle bone is a bone in the collection of bones in the foot called the tarsus. The tarsus forms the lower part of the ankle joint through its articulations with the lateral and medial malleoli of the two bones of the lower leg, the tibia and fibula. Within the tarsus, it articulates with the calcaneus below and navicular in front within the talocalcaneonavicular joint. Through these articulations, it transmits the entire weight of the body to the foot. The second largest of the tarsal bones, it is also one of the bones in the human body with the highest percentage of its surface area covered by articular cartilage. Additionally, it is also unusual in that it has a retrograde blood supply, i.e. arterial blood enters the bone at the distal end.][ In humans, no muscles attaches to the talus, unlike most bones, and it position is therefore dependent on the position on the neighbouring bones. Though irregular in shape, the talus can be subdivided into three parts. Facing anteriorly, the head carries the articulate surface of the navicular bone, and the neck, the roughened area between the body and the head, has small vascular channels. The body features several prominent articulate surfaces: On its superior side is the trochlea tali, which is semi-cylindrical, and it is flanked by the articulate facets for the two malleoli. The ankle mortise, the fork-like structure of the malleoli, holds these three articulate surfaces in a steady grip, which guarantees the stability of the ankle joint. However, because the trochlea is wider in front than at the back (approximately 5-6 mm) the stability in the joint vary with the position of the foot: with the foot dorsiflexed (toes pulled upward) the ligaments of the joint are kept stretched, which guarantees the stability of the joint; but with the foot plantarflexed (as when standing on the toes) the narrower width of the trochlea causes the stability to decrease. Behind the trochlea is a posterior process with a medial and a lateral tubercle separated by a groove for the tendon of the flexor hallucis longus. Exceptionally, the lateral of these tubercles forms an independent bone called os trigonum or "accessory talus". On the bone's inferior side, three articular surfaces serve for the articulation with the calcaneus, and several variously developed articular surfaces exist for the articulation with ligaments. During the 7-8th intrauterine month an ossification center is formed in the talus. The talus bone lacks a good blood supply. Because of this, healing a broken talus can take longer than most other bones. One with a broken talus may not be able to walk for many months without crutches and will further wear a walking cast or boot of some kind after that. The talus is apparently derived from the fusion of three separate bones in the feet of primitive amphibians; the tibiale, articulating with tibia, the intermedium, between the bases of the tibia and fibula, and the fourth centrale, lying in the mid-part of the tarsus. These bones are still partially separate in modern amphibians, which therefore do not have a true talus. The talus forms a considerably more flexible joint in mammals than it does in reptiles. This reaches its greatest extent in artiodactyls, where the distal surface of the bone has a smooth keel to allow greater freedom of movement of the foot, and thus increase running speed. Talus - inferior view Lateral view of the human ankle, including the talus Bones of the right foot. Dorsal surface. Bones of the right foot. Plantar surface. Left talus, medial surface. Left talus, lateral surface. Skeleton of foot. Medial aspect. Skeleton of foot. Lateral aspect. Capsule of left talocrura articulation (distended). Lateral aspect. Coronal section through right talocrural and talocalcaneal joints. Oblique section of left intertarsal and tarsometatarsal articulations, showing the synovial cavities. Bones of foot Dorsum of Foot. Ankle joint. Deep dissection Dorsum of Foot. Ankle joint. Deep dissection Dorsum and sole of Foot. Ankle joint. Deep dissection. Ankle joint. Deep dissection. Anterior view. Dorsum of Foot. Ankle joint. Deep dissection Ankle joint. Deep dissection. Medial view Ankle joint. Deep dissection. Lateral view. Ankle joint. Deep dissection. Ankle joint. Deep dissection. Ankle joint. Deep dissection. Ankle joint. Deep dissection. Ankle joint. Deep dissection. Knee, tibiofibular and ankle joints.Deep dissection. Anterolateral view. Knee, tibiofibular and ankle joints.Deep dissection. Anterolateral view. Ankle and tarsometarsal joints. Bones of foot.Deep dissection. Ankle and tarsometarsal joints. Bones of foot.Deep dissection. Ankle joint. Bones of foot.Deep dissection. Ankle joint. Bones of foot.Deep dissection. M: BON/CAR anat (c/f/k/f, u, t/p, l)/phys/devp/cell noco/cong/tumr, sysi/epon, injr proc, drug (M5)

Swelling (medical)
In medical parlance, swelling, turgescence or tumefaction is a transient abnormal enlargement of a body part or area not caused by proliferation of cells. It is caused by accumulation of fluid in tissues. It can occur throughout the body (generalized), or a specific part or organ can be affected (localized). Swelling is considered one of the five characteristics of inflammation; along with pain, heat, redness, and loss of function. In a general sense, the suffix "-megaly" is used to indicate a growth, as in hepatomegaly, acromegaly, and splenomegaly. A body part may swell in response to injury, infection, or disease. Swelling, especially of the ankle, can occur if the body is not circulating fluid well. Generalized swelling, or massive edema (also called anasarca), is a common sign in severely ill people. Although slight edema may be difficult to detect to the untrained eye, especially in an overweight person, massive edema is very obvious. Congenital swellings are present since birth, e.g., hemangioma, meningocele, etc. Some congenital swellings may not appear since birth, but later in life, e.g., branchial cyst, dermatoid cyst, thyroglossal cyst. Traumatic swellings develop immediately after trauma, e.g., hematoma, dislocation. Inflammatory swelling: It may be either acute or chronic variety. The presentations of acute swellings are redness, local fever, pain and impairment of function of the affected organ. The related lymph nodes will be affected and will show signs of acute lymphadenitis. Chronic inflammatory swellings will show the signs of acute inflammatory swellings, but in subdued form. In this case, edema might not occur. Such swellings can be differentiated from neoplastic swellings by the fact that neoplastic swellings never recede in size, but inflammatory swellings may show occasional diminution. Causes of generalized swelling: Some possible causes of a swollen limb include: While it is possible for mild swelling to go away on its own, several things can be done to relieve the symptoms or hasten the process. The RICE first aid method of rest and protecting the affected area has long been taught as a short term solution. The application of oxygen is known to assist in the reduction of swelling. An effective option for extrinsic treatment of swelling and it's reduction is Kinesio Tape (KT). By strategically cutting and placing Kinesio Tape above the area of swelling it assists in the removal of edema (swelling) by directing the exudates toward lymphatic ducts. This is aided by KT's inherent property of lifting the epidermis away from the dermis creating a larger area for blood flow and lymphatic movement.][ M: INT, SF, LCT anat/phys/devp noco (i/b/d/q/u/r/p/m/k/v/f)/cong/tumr (n/e/d), sysi/epon proc, drug (D2/3/4/5/8/11) M: SKA anat/phys/devp noco/cong/tumr, sysi/epon proc, drug (D10)

The foot (plural feet) is an anatomical structure found in many vertebrates. It is the terminal portion of a limb which bears weight and allows locomotion. In many animals with feet, the foot is a separate organ at the terminal part of the leg made up of one or more segments or bones, generally including claws or nails. The human foot and ankle is a strong and complex mechanical structure containing exactly 26 bones, 33 joints (20 of which are actively articulated), and more than a hundred muscles, tendons, and ligaments. An anthropometric study of 1197 North American adult Caucasian males (mean age 35.5 years) found that a man's foot length was 26.3 cm with a standard deviation of 1.2 cm. The foot can be subdivided into the hindfoot, the midfoot, and the forefoot: The hindfoot is composed of the talus (or ankle bone) and the calcaneus (or heel bone). The two long bones of the lower leg, the tibia and fibula, are connected to the top of the talus to form the ankle. Connected to the talus at the subtalar joint, the calcaneus, the largest bone of the foot, is cushioned inferiorly by a layer of fat. The five irregular bones of the midfoot, the cuboid, navicular, and three cuneiform bones, form the arches of the foot which serves as a shock absorber. The midfoot is connected to the hind- and fore-foot by muscles and the plantar fascia. The forefoot is composed of five toes and the corresponding five proximal long bones forming the metatarsus. Similar to the fingers of the hand, the bones of the toes are called phalanges and the big toe has two phalanges while the other four toes have three phalanges. The joints between the phalanges are called interphalangeal and those between the metatarsus and phalanges are called metatarsophalangeal (MTP). Both the midfoot and forefoot constitute the dorsum (the area facing upwards while standing) and the planum (the area facing downwards while standing). The instep is the arched part of the top of the foot between the toes and the ankle. There can be many sesamoid bones near the metatarsophalangeal joints, although they are only regularly present in the distal portion of the first metatarsal bone. The human foot has two longitudinal arches and a transverse arch maintained by the interlocking shapes of the foot bones, strong ligaments, and pulling muscles during activity. The slight mobility of these arches when weight is applied to and removed from the foot makes walking and running more economical in terms of energy. As can be examined in a footprint, the medial longitudinal arch curves above the ground. This arch stretches from the heel bone over the "keystone" ankle bone to the three medial metatarsals. In contrast, the lateral longitudinal arch is very low. With the cuboid serving as its keystone, it redistributes part of the weight to the calcaneus and the distal end of the fifth metatarsal. The two longitudinal arches serve as pillars for the transverse arch which run obliquely across the tarsometatarsal joints. Excessive strain on the tendons and ligaments of the feet can result in fallen arches or flat feet. The muscles acting on the foot can be classified into extrinsic muscles, those originating on the anterior or posterior aspect of the lower leg, and intrinsic muscles, originating on the dorsal (top) or plantar (base) aspects of the foot. All muscles originating on the lower leg except the popliteus muscle are attached to the bones of the foot. The tibia and fibula and the interosseous membrane separate these muscles into anterior and posterior groups, in their turn subdivided into subgroups and layers. Anterior group Extensor group: tibialis anterior originates on the proximal half of the tibia and the interosseous membrane and is inserted near the tarsometatarsal joint of the first digit. In the non-weight-bearing leg tibialis anterior flexes the foot dorsally and lift its medial edge (supination). In the weight-bearing leg it brings the leg towards the back of the foot, like in rapid walking. Extensor digitorum longus arises on the lateral tibial condyle and along the fibula to be inserted on the second to fifth digits and proximally on the fifth metatarsal. The extensor digitorum longus acts similar to the tibialis anterior except that it also dorsiflexes the digits. Extensor hallucis longus originates medially on the fibula and is inserted on the first digit. As the name implies it dorsiflexes the big toe and also acts on the ankle in the unstressed leg. In the weight-bearing leg it acts similar to the tibialis anterior. Peroneal group: peroneus longus arises on the proximal aspect of the fibula and peroneus brevis below it on the same bone. Together, their tendons pass behind the lateral malleolus. Distally, peroneus longus crosses the plantar side of the foot to reach its insertion on the first tarsometatarsal joint, while peroneus brevis reaches the proximal part of the fifth metatarsal. These two muscles are the strongest pronators and aid in plantar flexion. Longus also acts like a bowstring that braces the transverse arch of the foot. Posterior group The superficial layer of posterior leg muscles is formed by the triceps surae and the plantaris. The triceps surae consists of the soleus and the two heads of the gastrocnemius. The heads of gastrocnemius arise on the femur, proximal to the condyles, and soleus arises on the proximal dorsal parts of the tibia and fibula. The tendons of these muscles merge to be inserted onto the calcaneus as the Achilles tendon. Plantaris originates on the femur proximal to the lateral head of the gastrocnemius and its long tendon is embedded medially into the Achilles tendon. The triceps surae is the primary plantar flexor and its strength becomes most obvious during ballet dancing. It is fully activated only with the knee extended because the gastrocnemius is shortened during knee flexion. During walking it not only lifts the heel, but also flexes the knee, assisted by the plantaris. In the deep layer of posterior muscles tibialis posterior arises proximally on the back of the interosseous membrane and adjoining bones and divides into two parts in the sole of the foot to attach to the tarsus. In the non-weight-bearing leg, it produces plantar flexion and supination, and, in the weight-bearing leg, it proximates the heel to the calf. flexor hallucis longus arises on the back of the fibula (i.e. on the lateral side), and its relatively thick muscle belly extends distally down to the flexor retinaculum where it passes over to the medial side to stretch across the sole to the distal phalanx of the first digit. The popliteus is also part of this group, but, with its oblique course across the back of the knee, does not act on the foot. On the back (top) of the foot, the tendons of extensor digitorum brevis and extensor hallucis brevis lie deep to the system of long extrinsic extensor tendons. They both arise on the calcaneus and extend into the dorsal aponeurosis of digits one to four, just beyond the penultimate joints. They act to dorsiflex the digits. Similar to the intrinsic muscles of the hand, there are three groups of muscles in the sole of foot, those of the first and last digits, and a central group: Muscles of the big toe: abductor hallucis stretches medially along the border of the sole, from the calcaneus to the first digit. Below its tendon, the tendons of the long flexors pass through the tarsal canal. It is an abductor and a weak flexor, and also helps maintain the arch of the foot. flexor hallucis brevis arises on the medial cuneiform bone and related ligaments and tendons. An important plantar flexor, it is crucial for ballet dancing. Both these muscles are inserted with two heads proximally and distally to the first metatarsophalangeal joint. Adductor hallucis is part of this group, though it originally formed a separate system (see contrahens.) It has two heads, the oblique head originating obliquely across the central part of the midfoot, and the transverse head originating near the metatarsophalangeal joints of digits five to three. Both heads are inserted into the lateral sesamoid bone of the first digit. Adductor hallucis acts as a tensor of the plantar arches and also adducts the big toe and then might plantar flex the proximal phalanx. Muscles of the little toe: Stretching laterally from the calcaneus to the proximal phalanx of the fifth digit, abductor digiti minimi form the lateral margin of the foot and is the largest of the muscles of the fifth digit. Arising from the base of the fifth metatarsal, flexor digiti minimi is inserted together with abductor on the first phalanx. Often absent, opponens digiti minimi originates near the cuboid bone and is inserted on the fifth metatarsal bone. These three muscles act to support the arch of the foot and to plantar flex the fifth digit. Central muscle group: The four lumbricales arise on the medial side of the tendons of flexor digitorum longus and are inserted on the medial margins of the proximal phalanges. Quadratus plantae originates with two slips from the lateral and medial margins of the calcaneus and inserts into the lateral margin of the flexor digitorum tendon. It is also known as flexor accessorius. Flexor digitorum brevis arise inferiorly on the calcaneus and its three tendons are inserted into the middle phalanges of digits two to four (sometimes also the fifth digit). These tendons divide before their insertions and the tendons of flexor digitorum longus pass through these divisions. Flexor digitorum brevis flexes the middle phalanges. It is occasionally absent. Between the toes, the dorsal and plantar interossei stretch from the metatarsals to the proximal phalanges of digits two to five. The plantar interossei adducts and the dorsal interossei abducts these digits and are also plantar flexors at the metatarsophalangeal joints. Due to their position and function, feet are exposed to a variety of potential infections and injuries, including athlete's foot, bunions, ingrown toenails, Morton's neuroma, plantar fasciitis, plantar warts and stress fractures. In addition, there are several genetic disorders that can affect the shape and function of the feet, including a club foot or flat feet. This leaves humans more vulnerable to medical problems that are caused by poor leg and foot alignments. Also, the wearing of shoes, sneakers and boots can impede proper alignment and movement within the ankle and foot. For example, High-heeled footwear are known to throw off the natural weight balance (this can also affect the lower back). For the sake of posture, flat soles with no heels are advised. A doctor who specializes in the treatment of the feet practices podiatry and is called a podiatrist. A pedorthist specializes in the use and modification of footwear to treat problems related to the lower limbs. Fractures of the foot include: Foot sweat is the major cause of foot odor. Sweat itself is odorless, but it creates a beneficial environment for certain bacteria to grow and produce bad-smelling substances. In anatomy, pronation is a rotational movement of the forearm (at the radioulnar joint) or foot (at the subtalar and talocalcaneonavicular joints). Pronation of the foot refers to how the body distributes weight as it cycles through the gait. During the gait cycle the foot can pronate in many different ways based on rearfoot and forefoot function. Types of pronation include neutral pronation, underpronation (supination), and overpronation. An individual who neutrally pronates initially strikes the ground on the lateral side of the heel. As the individual transfers weight from the heel to the metatarsus, the foot will roll in a medial direction, such that the weight is distributed evenly across the metatarsus. In this stage of the gait, the knee will generally, but not always, track directly over the hallux. This rolling inwards motion as the foot progresses from heel to toe is the way that the body naturally absorbs shock. Neutral pronation is the most ideal, efficient type of gait when using a heel strike gait; in a forefoot strike, the body absorbs shock instead via flexation of the foot. As with a neutral pronator, an individual who overpronates initially strikes the ground on the lateral side of the heel. As the individual transfers weight from the heel to the metatarsus, however, the foot will roll too far in a medial direction, such that the weight is distributed unevenly across the metatarsus, with excessive weight borne on the hallux. In this stage of the gait, the knee will generally, but not always, track inwards. An overpronator does not absorb shock efficiently. Imagine someone jumping onto a diving board, but the board is so flimsy that when it is struck, it bends and allows the person to plunge straight down into the water instead of back into the air. Similarly, an overpronator's arches will collapse, or the ankles will roll inwards (or a combination of the two) as they cycle through the gait. An individual whose bone structure involves external rotation at the hip, knee, or ankle will be more likely to overpronate than one whose bone structure has internal rotation or central alignment. An individual who overpronates tends to wear down their running shoes on the medial (inside) side of the shoe towards the toe area. When choosing a running or walking shoe, a person with overpronation can choose shoes that have good inside support—usually by strong material at the inside sole and arch of the shoe. It is usually visible. The inside support area is marked by strong greyish material to support the weight when a person lands on the outside foot and then roll onto the inside foot. An individual who underpronates also initially strikes the ground on the lateral side of the heel. As the individual transfers weight from the heel to the metatarsus, the foot will not roll far enough in a medial direction. The weight is distributed unevenly across the metatarsus, with excessive weight borne on the fifth metatarsal, towards the lateral side of the foot. In this stage of the gait, the knee will generally, but not always, track laterally of the hallux. Like an overpronator, an underpronator does not absorb shock efficiently - but for the opposite reason. The underpronated foot is like a diving board that, instead of failing to spring someone in the air because it is too flimsy, it fails to do so because it is too rigid. There is virtually no give. An underpronator's arches or ankles don't experience much motion as they cycle through the gait. An individual whose bone structure involves internal rotation at the hip, knee, or ankle will be more likely to underpronate than one whose bone structure has external rotation or central alignment. Usually - but not always - those who are bow-legged tend to underpronate. An individual who underpronates tends to wear down their running shoes on the lateral (outside) side of the shoe towards the rear of the shoe in the heel area. A paw is the soft foot of a mammal, generally a quadruped, that has claws or nails. A hard foot is called a hoof. Depending on style of locomotion, animals can be classified as plantigrade (sole walking), digitigrade (toe walking), or unguligrade (nail walking). The metatarsals are the bones that make up the main part of the foot in humans, and part of the leg in large animals or paw in smaller animals. The number of metatarsals are directly related to the mode of locomotion with many larger animals having their digits reduced to two (elk, cow, sheep) or one (horse). The metatarsal bones of feet and paws are tightly grouped compared to, most notably, the human hand where the thumb metacarpal diverges from the rest of the metacarpus. Humans usually wear shoes or similar footwear covering material for protection from hazards when walking outside. Foot fetishism is the most common form of sexual fetish. gluteals: (maximus, medius, minimus)  tensor fasciae latae
Femoral sheath (Femoral canal)  Femoral ring Adductor canal  Adductor hiatus Pes anserinus
Plantar fascia
M: MUS, DF+DRCT anat (h/n, u, t/d, a/p, l)/phys/devp/hist noco (m, s, c)/cong (d)/tumr, sysi/epon, injr proc, drug (M1A/3)
Bone fractures Traumatology Ankle fracture Ankle Foot Sprained ankle Medicine Emergency medicine Anatomy Human Interest

Related Websites:

Terms of service | About