What wavelengths of light are absorbed by solar panels? (AKA photovoltaic cells)?


Solar cells tend to absorb the wavelengths of solar light that reach Earth's surface; some absorb light beyond Earth's atmosphere.

More Info:

wavelengths Energy
Energy conversion

Energy transformation or energy conversion is the process of changing one form of energy to another. In physics, the term energy describes the capacity to produce certain changes within a system, without regard to limitations in transformation imposed by Entropy. Changes in total energy of systems can only be accomplished by adding or removing energy from them, as energy is a quantity which is conserved (unchanging), as stated by the first law of thermodynamics. Mass-energy equivalence, which arose from special relativity, says that changes in the energy of systems will also coincide with changes (often small in practice) in the system's mass, and the mass of a system is a measure of its energy content.

Energy in its various forms may be used in natural processes, or to provide some service to society such as heating, refrigeration, light, or performing mechanical work to operate machines. For example, an internal combustion engine converts the potential chemical energy in gasoline and oxygen into thermal energy which, by causing pressure and performing work on the pistons, is transformed into the mechanical energy that accelerates the vehicle (increasing its kinetic energy) and that pushes it up hills (increasing its gravitational potential energy). A solar cell converts the radiant energy of sunlight into electrical energy that can then be used to light a bulb or power a computer.

Technology Photovoltaics
Semiconductor devices

Semiconductor devices are electronic components that exploit the electronic properties of semiconductor materials, principally silicon, germanium, and gallium arsenide, as well as organic semiconductors. Semiconductor devices have replaced thermionic devices (vacuum tubes) in most applications. They use electronic conduction in the solid state as opposed to the gaseous state or thermionic emission in a high vacuum.

Semiconductor devices are manufactured both as single discrete devices and as integrated circuits (ICs), which consist of a number—from a few (as low as two) to billions—of devices manufactured and interconnected on a single semiconductor substrate, or wafer.

A solar cell (also called a photovoltaic cell or photocell) is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect. It is a form of photoelectric cell (in that its electrical characteristics—e.g. current, voltage, or resistance—vary when light is incident upon it) which, when exposed to light, can generate and support an electric current without being attached to any external voltage source, but do require an external load for power consumption.

The term "photovoltaic" comes from the Greek φῶς (phōs) meaning "light", and from "volt", the unit of electro-motive force, the volt, which in turn comes from the last name of the Italian physicist Alessandro Volta, inventor of the battery (electrochemical cell). The term "photo-voltaic" has been in use in English since 1849.

Energy harvesting

Energy harvesting (also known as power harvesting or energy scavenging) is the process by which energy is derived from external sources (e.g. solar power, thermal energy, wind energy, salinity gradients, and kinetic energy), captured, and stored for small, wireless autonomous devices, like those used in wearable electronics and wireless sensor networks.

Energy harvesters provide a very small amount of power for low-energy electronics. While the input fuel to some large-scale generation costs money (oil, coal, etc.), the energy source for energy harvesters is present as ambient background and is free. For example, temperature gradients exist from the operation of a combustion engine and in urban areas, there is a large amount of electromagnetic energy in the environment because of radio and television broadcasting.

Atmosphere of Earth

The atmosphere of Earth is a layer of gases surrounding the planet Earth that is retained by Earth's gravity. The atmosphere protects life on Earth by absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night (the diurnal temperature variation).

The common name given to the atmospheric gases used in breathing and photosynthesis is air. By volume, dry air contains 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.039% carbon dioxide, and small amounts of other gases. Air also contains a variable amount of water vapor, on average around 1%. While air content and atmospheric pressure vary at different layers, air suitable for the survival of terrestrial plants and terrestrial animals currently is only known to be found in Earth's troposphere and artificial atmospheres.


A solar panel is a set of solar photovoltaic modules electrically connected and mounted on a supporting structure. A photovoltaic module is a packaged, connected assembly of solar cells. The solar module can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Each module is rated by its DC output power under standard test conditions (STC), and typically ranges from 100 to 320 watts. The efficiency of a module determines the area of a module given the same rated output - an 8% efficient 230 watt module will have twice the area of a 16% efficient 230 watt module. A single solar module can produce only a limited amount of power; most installations contain multiple modules. A photovoltaic system typically includes a panel or an array of solar modules, an inverter, and sometimes a battery and/or solar tracker and interconnection wiring.

Multi-junction solar cells or tandem cells are solar cells containing several p-n junctions. Each junction is tuned to a different wavelength of light, reducing one of the largest inherent sources of losses, and thereby increasing efficiency. Traditional single-junction cells have a maximum theoretical efficiency of 34%, a theoretical "infinite-junction" cell would improve this to 87% under highly concentrated sunlight.

Currently, the best lab examples of traditional silicon solar cells have efficiencies around 25%, while lab examples of multi-junction cells have demonstrated performance over 43%. Commercial examples of tandem cells are widely available at 30% under one-sun illumination, and improve to around 40% under concentrated sunlight. However, this efficiency is gained at the cost of increased complexity and manufacturing price. To date, their higher price and higher price-to-performance ratio have limited their use to special roles, notably in aerospace where their high power-to-weight ratio is desirable. In terrestrial applications these solar cells have been suggested for use in concentrated photovoltaics (CPV), with numerous small test sites around the world. To date, no large-scale commercial CPV system has been constructed.

William Yuan Environment
Technology Internet

The Internet is a global system of interconnected computer networks that use the standard Internet protocol suite (TCP/IP) to serve several billion users worldwide. It is a network of networks that consists of millions of private, public, academic, business, and government networks, of local to global scope, that are linked by a broad array of electronic, wireless and optical networking technologies. The Internet carries an extensive range of information resources and services, such as the inter-linked hypertext documents of the World Wide Web (WWW), the infrastructure to support email, and peer-to-peer networks.

Most traditional communications media including telephone, music, film, and television are being reshaped or redefined by the Internet, giving birth to new services such as voice over Internet Protocol (VoIP) and Internet Protocol television (IPTV). Newspaper, book and other print publishing are adapting to website technology, or are reshaped into blogging and web feeds. The Internet has enabled and accelerated new forms of human interactions through instant messaging, Internet forums, and social networking. Online shopping has boomed both for major retail outlets and small artisans and traders. Business-to-business and financial services on the Internet affect supply chains across entire industries.


Related Websites:

Terms of service | About