Question:

What is ultraviolet light, microwaves, radio waves, X rays in order of increasing wavelength?

Answer:

In order of increasing wavelength it would be: X rays, ultraviolet rays, microwaves and then radio waves with the most.

More Info:

Ultraviolet (UV) light is electromagnetic radiation with a wavelength shorter than that of visible light, but longer than X-rays, that is, in the range between 400 nm and 10 nm, corresponding to photon energies from 3 eV to 124 eV. It is so-named because the spectrum consists of electromagnetic waves with frequencies higher than those that humans identify as the color violet. These frequencies are invisible to most humans except those with Aphakia. Near UV is visible to a number of insects and birds.

UV light is found in sunlight and is emitted by electric arcs and specialized lights such as mercury lamps and black lights. It can cause chemical reactions, and causes many substances to glow or fluoresce. A large fraction of UV, including all that reaches the surface of the Earth, is classified as non-ionizing radiation. The higher energies of the ultraviolet spectrum from wavelengths about 120 nm to 10 nm ('extreme' ultraviolet) are ionizing, but due to this effect, these wavelengths are absorbed by nitrogen and even more strongly by dioxygen, and thus have an extremely short path length through air. However, the entire spectrum of ultraviolet radiation has some of the biological features of ionizing radiation: it does far more damage to many molecules in biological systems than is accounted for by simple heating effects (an example is sunburn). These properties derive from the ultraviolet photon's power to alter chemical bonds in molecules, even without having enough energy to ionize atoms.

Electromagnetic radiation (EM radiation or EMR) is one of the fundamental phenomena of electromagnetism, behaving as waves propagating through space, and also as photon particles traveling through space, carrying radiant energy. In a vacuum, it propagates at a characteristic speed, the speed of light, normally in straight lines. EMR is emitted and absorbed by charged particles. As an electromagnetic wave, it has both electric and magnetic field components, which oscillate in a fixed relationship to one another, perpendicular to each other and perpendicular to the direction of energy and wave propagation.

EMR is characterized by the frequency or wavelength of its wave. The electromagnetic spectrum, in order of increasing frequency and decreasing wavelength, consists of radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays. The eyes of various organisms sense a somewhat variable but relatively small range of frequencies of EMR called the visible spectrum or light. Higher frequencies correspond to proportionately more energy carried by each photon; for instance, a single gamma ray photon carries far more energy than a single photon of visible light.

The electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation. The "electromagnetic spectrum" of an object has a different meaning, and is instead the characteristic distribution of electromagnetic radiation emitted or absorbed by that particular object.

The electromagnetic spectrum extends from below the low frequencies used for modern radio communication to gamma radiation at the short-wavelength (high-frequency) end, thereby covering wavelengths from thousands of kilometers down to a fraction of the size of an atom. The limit for long wavelengths is the size of the universe itself, while it is thought that the short wavelength limit is in the vicinity of the Planck length, although in principle the spectrum is infinite and continuous.

Physics Radiation Microwave X-ray Wave Ultraviolet Light

In physics, terahertz radiation, also called submillimeter radiation, terahertz waves, terahertz light, T-rays, T-waves, T-light, T-lux, or THz, consists of electromagnetic waves at frequencies from 0.3 to 3 terahertz (THz). The term applies to electromagnetic radiation with frequencies between the high-frequency edge of the millimeter wave band, 300 gigahertz (3×1011 Hz), and the low frequency edge of the far-infrared light band, 3000 GHz (3×1012 Hz). Corresponding wavelengths of radiation in this band range from 1 mm to 0.1 mm (or 100 μm)

Because terahertz radiation begins at a wavelength of one millimeter and proceeds into shorter wavelengths, it is sometimes known as the submillimeter band, and its radiation as submillimeter waves, especially in astronomy.

News:


Related Websites:


Terms of service | About
8