Question:

What is the sequence of metamorphism from low to high grade starting with a shale protolith?

Answer:

For a shale protolith, Slate (which is low grade) to Phyllite to Schist and then to Gneiss (which is high grade).

More Info:

metamorphism Petrology Geology

Metamorphic rocks arise from the transformation of existing rock types, in a process called metamorphism, which means "change in form". The original rock (protolith) is subjected to heat (temperatures greater than 150 to 200 °C) and pressure (1500 bars), causing profound physical and/or chemical change. The protolith may be sedimentary rock, igneous rock or another older metamorphic rock.

Metamorphic rocks make up a large part of the Earth's crust and are classified by texture and by chemical and mineral assemblage (metamorphic facies). They may be formed simply by being deep beneath the Earth's surface, subjected to high temperatures and the great pressure of the rock layers above it. They can form from tectonic processes such as continental collisions, which cause horizontal pressure, friction and distortion. They are also formed when rock is heated up by the intrusion of hot molten rock called magma from the Earth's interior. The study of metamorphic rocks (now exposed at the Earth's surface following erosion and uplift) provides information about the temperatures and pressures that occur at great depths within the Earth's crust. Some examples of metamorphic rocks are gneiss, slate, marble, schist, and quartzite.

Petrology (from the Greek πέτρα, petra, "rock" and λόγος, logos, "study") is the branch of geology that studies the origin, composition, distribution and structure of rocks.

Lithology was once approximately synonymous with petrography; but in current usage, lithology focuses on macroscopic hand-sample or outcrop-scale description of rocks, while petrography is the speciality that deals with microscopic details.

Phyllite Protolith Shale Schist Slate Gneiss

The Narryer Gneiss Terrane is a geological complex in Western Australia that is composed of a tectonically interleaved and polydeformed mixture of granite, mafic intrusions and metasedimentary rocks in excess of 3.3 billion years old, with the majority of the Narryer Gneiss Terrane in excess of 3.6 billion years old. The rocks have experienced multiple metamorphic events at amphibolite or granulite conditions, resulting in often complete destruction of original igneous or sedimentary (protolith) textures. Importantly, it contains the oldest known samples of the Earth's crust: samples of zircon from the Jack Hills portion of the Narryer Gneiss have been radiometrically dated at 4.4 billion years old, although the majority of zircon crystals are about 3.6-3.8 billion years old.

The Narryer Gneiss Terrane is adjacent to the northernmost margin of the Yilgarn Craton and is abutted on the north by the Gascoyne Complex metasedimentary and metagranite orogen. The Narryer Gneiss Terrane also includes parts of the Yarlarweelor Gneiss which abuts to Nabberu Basin metamorphic sequences of the Bryah-Padbury Basins, where it is present as discontinuous slivers of metamorphic rocks, pelites, metaconglomerates and gneisses caught up within regional strike-slip oblique thrust faults.

News:


Related Websites:


Terms of service | About
6