Question:

What is the region around the nucleus where the electrons freely and rapidly move?

Answer:

The electrons in an atom are attracted to the protons in the nucleus by the electromagnetic force, known as an electron cloud.

More Info:

Quantum chemistry is a branch of chemistry whose primary focus is the application of quantum mechanics in physical models and experiments of chemical systems. It involves heavy interplay of experimental and theoretical methods:

In these ways, quantum chemists investigate chemical phenomena.

In physics, a charge carrier is a particle free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. In a conducting medium, an electric field can exert force on these free particles, causing a net motion of the particles through the medium; this is what constitutes an electric current. In different conducting media, different particles serve to carry charge:

It can be seen that in some conductors, such as ionic solutions and plasmas, there are both positive and negative charge carriers, so an electric current in them consists of the two polarities of carrier moving in opposite directions. In other conductors, such as metals, there are only charge carriers of one polarity, so an electric current in them just consists of charge carriers moving in one direction.

In the physical sciences, subatomic particles are the particles smaller than an atom. (although some subatomic particles have mass greater than some atoms). There are two types of subatomic particles: elementary particles, which according to current theories are not made of other particles; and composite particles. Particle physics and nuclear physics study these particles and how they interact.

The elementary particles of the Standard Model include:

Nuclear physics is the field of physics that studies the constituents and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those in nuclear medicine and magnetic resonance imaging, ion implantation in materials engineering, and radiocarbon dating in geology and archaeology.

The field of particle physics evolved out of nuclear physics and is typically taught in close association with nuclear physics.

Electron

An atomic orbital is a mathematical function that describes the wave-like behavior of either one electron or a pair of electrons in an atom. This function can be used to calculate the probability of finding any electron of an atom in any specific region around the atom's nucleus. The term may also refer to the physical region or space where the electron can be calculated to be present, as defined by the particular mathematical form of the orbital.

Each orbital in an atom is characterized by a unique set of values of the three quantum numbers n, , and m, which correspond to the electron's energy, angular momentum, and an angular momentum vector component, respectively. Any orbital can be occupied by a maximum of two electrons, each with its own spin quantum number. The simple names s orbital, p orbital, d orbital and f orbital refer to orbitals with angular momentum quantum number = 0, 1, 2 and 3 respectively. These names, together with the value of n, are used to describe the electron configurations. They are derived from the description by early spectroscopists of certain series of alkali metal spectroscopic lines as sharp, principal, diffuse, and fundamental. Orbitals for > 3 are named in alphabetical order (omitting j).

The nucleus is the very dense region consisting of protons and neutrons at the center of an atom. It was discovered in 1911 as a result of Ernest Rutherford's interpretation of the 1909 Geiger–Marsden gold foil experiment performed by Hans Geiger and Ernest Marsden under Rutherford's direction. The proton–neutron model of nucleus was proposed by Dmitry Ivanenko in 1932. Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud.

The diameter of the nucleus is in the range of 1.75 fm (1.75×10−15 m) for hydrogen (the diameter of a single proton)]not in citation given[ to about 15 fm for the heaviest atoms, such as uranium. These dimensions are much smaller than the diameter of the atom itself (nucleus + electron cloud), by a factor of about 23,000 (uranium) to about 145,000 (hydrogen).]citation needed[

Atom Ion Physics Chemistry

Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. It is primarily concerned with the arrangement of electrons around the nucleus and the processes by which these arrangements change. This includes ions as well as neutral atoms and, unless otherwise stated, for the purposes of this discussion it should be assumed that the term atom includes ions.

The term atomic physics is often associated with nuclear power and nuclear bombs, due to the synonymous use of atomic and nuclear in standard English. However, physicists distinguish between atomic physics — which deals with the atom as a system consisting of a nucleus and electrons — and nuclear physics, which considers atomic nuclei alone.

Technology Internet Technology Internet
News:


Related Websites:


Terms of service | About
17