What is the function of channel proteins?


Channel proteins help establish and control the small voltage gradient across the plasma membrane of all living cells. AnswerParty!

More Info:

Membrane biology

Membrane biology is the study of the biological and physiochemical characteristics of membranes.

Cell communication

Cell signalling (Cell signaling in American English) is part of a complex system of communication that governs basic cellular activities and coordinates cell actions. The ability of cells to perceive and correctly respond to their microenvironment is the basis of development, tissue repair, and immunity as well as normal tissue homeostasis. Errors in cellular information processing are responsible for diseases such as cancer, autoimmunity, and diabetes. By understanding cell signaling, diseases may be treated effectively and, theoretically, artificial tissues may be created.]citation needed[

Traditional work in biology has focused on studying individual parts of cell signaling pathways. Systems biology research helps us to understand the underlying structure of cell signaling networks and how changes in these networks may affect the transmission and flow of information. Such networks are complex systems in their organization and may exhibit a number of emergent properties including bistability and ultrasensitivity. Analysis of cell signaling networks requires a combination of experimental and theoretical approaches including the development and analysis of simulations and modeling.]citation needed[ Long-range allostery is often a significant component of cell signaling events.

Ion channel

Ion channels are pore-forming membrane proteins whose functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane, controlling the flow of ions across secretory and epithelial cells, and regulating cell volume. Ion channels are present in the membranes of all cells. Ion channels are considered to be one of the two traditional classes of ionophoric proteins, with the other class known as ion transporters (including the sodium-potassium pump, sodium-calcium exchanger, and sodium-glucose transport proteins, amongst others).

Study of ion channels (channelomics) often includes biophysics, electrophysiology and pharmacology, utilizing techniques including voltage clamp, patch clamp, immunohistochemistry, and RT-PCR.

Cell membrane

The 'cell membrane' (also known as the plasma membrane or cytoplasmic membrane) is a biological membrane that separates the interior of all cells from the outside environment. The cell membrane is selectively permeable to ions and organic molecules and controls the movement of substances in and out of cells. The basic function of the cell membrane is to protect the cell from its surroundings. It consists of the phospholipid bilayer with embedded proteins. Cell membranes are involved in a variety of cellular processes such as cell adhesion, ion conductivity and cell signaling and serve as the attachment surface for several extracellular structures, including the cell wall, glycocalyx, and intracellular cytoskeleton. Cell membranes can be artificially reassembled.

The cell membrane or plasma membrane surrounds the cytoplasm of living cells, physically separating the intracellular components from the extracellular environment. Fungi, bacteria and plants also have the cell wall which provides a mechanical support for the cell and precludes the passage of larger molecules. The cell membrane also plays a role in anchoring the cytoskeleton provide shape to the cell, and in attaching to the extracellular matrix and other cells to help group cells together to form tissues.

Membrane potential

Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. With respect to the exterior of the cell, typical values of membrane potential range from –40 mV to –80 mV.

All animal cells are surrounded by a membrane composed of a lipid bilayer with proteins embedded in it. The membrane serves as both an insulator and a diffusion barrier to the movement of ions. Ion transporter/pump proteins actively push ions across the membrane to establish concentration gradients across the membrane, and ion channels allow ions to move across the membrane down those concentration gradients, a process known as facilitated diffusion. Ion pumps and ion channels are electrically equivalent to a set of batteries and resistors inserted in the membrane, and therefore create a voltage difference between the two sides of the membrane.

Voltage-gated ion channel

Voltage-gated ion channels are a class of transmembrane ion channels that are activated by changes in electrical potential difference near the channel; these types of ion channels are especially critical in neurons, but are common in many types of cells.

They have a crucial role in excitable neuronal and muscle tissues, allowing a rapid and co-ordinated depolarization in response to triggering voltage change. Found along the axon and at the synapse, voltage-gated ion channels directionally propagate electrical signals.

Biology Electrophysiology
Integral membrane proteins

An integral membrane protein (IMP) is a protein molecule (or assembly of proteins) that is permanently attached to the biological membrane. Proteins that cross the membrane are surrounded by "annular" lipids, which are defined as lipids that are in direct contact with a membrane protein. Such proteins can be separated from the biological membranes only using detergents, nonpolar solvents, or sometimes denaturing agents.

IMPs comprise a very significant fraction of the proteins encoded in an organism's genome.

Health Medical Pharma

Related Websites:

Terms of service | About