What is the formula for figuring out voltage across a resistor?


Step 1: Determine Current of total resistors across the series. (I = Current/V=Voltage/R(t)=Resistance Total) I = V / R(t) I = 9 / (2k + 5k + 10K) I = .53 mA Step 2: I = Current Vx=Voltage (x=Current Value across X Resistor) V = I x Rx.

More Info:


A physical quantity (or "physical magnitude") is a physical property of a phenomenon, body, or substance, that can be quantified by measurement.

An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components.

Electronic components have two or more electrical terminals (or leads) aside from antennas which may only have one terminal. These leads connect, usually soldered to a printed circuit board, to create an electronic circuit (a discrete circuit) with a particular function (for example an amplifier, radio receiver, or oscillator). Basic electronic components may be packaged discretely, as arrays or networks of like components, or integrated inside of packages such as semiconductor integrated circuits, hybrid integrated circuits, or thick film devices. The following list of electronic components focuses on the discrete version of these components, treating such packages as components in their own right.

An electrical network is an interconnection of electrical elements such as resistors, inductors, capacitors, voltage sources, current sources and switches. An electrical circuit is a network consisting of a closed loop, giving a return path for the current. Linear electrical networks, a special type consisting only of sources (voltage or current), linear lumped elements (resistors, capacitors, inductors), and linear distributed elements (transmission lines), have the property that signals are linearly superimposable. They are thus more easily analyzed, using powerful frequency domain methods such as Laplace transforms, to determine DC response, AC response, and transient response.

A resistive circuit is a circuit containing only resistors and ideal current and voltage sources. Analysis of resistive circuits is less complicated than analysis of circuits containing capacitors and inductors. If the sources are constant (DC) sources, the result is a DC circuit.


The electrical resistance of an electrical conductor is the opposition to the passage of an electric current through that conductor; the inverse quantity is electrical conductance, the ease at which an electric current passes. Electrical resistance shares some conceptual parallels with the mechanical notion of friction. The SI unit of electrical resistance is the ohm (Ω), while electrical conductance is measured in siemens (S).

An object of uniform cross section has a resistance proportional to its resistivity and length and inversely proportional to its cross-sectional area. All materials show some resistance, except for superconductors, which have a resistance of zero.


A voltage ladder is a simple electronic circuit consisting of several resistors connected in series with a voltage placed across the entire resistor network. Voltage ladders are useful for providing a set of successive voltage references, for instance for a Flash analog-to-digital converter.

A voltage drop occurs across each resistor in the network causing each successive "rung" of the ladder (each node of the circuit) to have a higher voltage then the one before it. Ohm's law can be used to easily calculate the voltage at each node. Since the ladder is a series circuit, the current is the same throughout, and is given by the total voltage divided by the total resistance (V/Req), which is just the sum of each series resistor in the ladder. The voltage drop across any one resistor is now given simply by I*Rn, where I is the current calculated above, and Rn is the resistance of the resistor in question. The voltage referenced to ground at any node is simply the sum of the voltages dropped by each resistor between that node and ground. Alternatively, you can use voltage division to determine node voltages without having to calculate the current directly. By this method, the voltage drop across any resistor is V*Rn/Req where V is the total voltage, Req is the total (equivalent) resistance, and Rn is the resistance of the resistor in question. The voltage of a node referenced to ground is still the sum of the drops across all the resistors, but it's now easier to consider all these resistors as a single equivalent resistance RT, which is simply the sum of all the resistances between the node and ground, so the node voltage is given by V*RT/Req.

A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it.

A current source is the dual of a voltage source. The term constant-current 'sink' is sometimes used for sources fed from a negative voltage supply. Figure 1 shows the schematic symbol for an ideal current source, driving a resistor load. There are two types - an independent current source (or sink) delivers a constant current. A dependent current source delivers a current which is proportional to some other voltage or current in the circuit.


Electronics engineering, or electronic engineering, is an engineering discipline where non-linear and active electrical components such as electron tubes, and semiconductor devices, especially transistors, diodes and integrated circuits, are utilized to design electronic circuits, devices and systems, typically also including passive electrical components and based on printed circuit boards. The term denotes a broad engineering field that covers important subfields such as analog electronics, digital electronics, consumer electronics, embedded systems and power electronics. Electronics engineering deals with implementation of applications, principles and algorithms developed within many related fields, for example solid-state physics, radio engineering, telecommunications, control systems, signal processing, systems engineering, computer engineering, instrumentation engineering, electric power control, robotics, and many others.]verification needed[

The Institute of Electrical and Electronics Engineers (IEEE) is one of the most important and influential organizations for electronics engineers.

Analogue electronics (or analog in American English) are electronic systems with a continuously variable signal, in contrast to digital electronics where signals usually take only two different levels. The term "analogue" describes the proportional relationship between a signal and a voltage or current that represents the signal. The word analogue is derived from the Greek word ανάλογος (analogos) meaning "proportional".


Related Websites:

Terms of service | About