What is the chemical reaction between Sodium chloride and Calcium Phosphate?


They form sodium chloride, and calcium phosphate. The balanced reaction equation is: 2Na3PO4 + 3CaCl2 ? 6NaCl + Ca3(PO4)2. AnswerParty!

More Info:

A chemical reaction is a process that leads to the transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei (no change to the elements present), and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes may both occur.

The substance (or substances) initially involved in a chemical reaction are called reactants or reagents. Chemical reactions are usually characterized by a chemical change, and they yield one or more products, which usually have properties different from the reactants. Reactions often consist of a sequence of individual sub-steps, the so-called elementary reactions, and the information on the precise course of action is part of the reaction mechanism. Chemical reactions are described with chemical equations, which graphically present the starting materials, end products, and sometimes intermediate products and reaction conditions.


A chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, which is the number of protons in its nucleus. Elements are divided into metals, metalloids, and non-metals. Familiar examples of elements include carbon, oxygen (non-metals), silicon, arsenic (metalloids), aluminium, iron, copper, gold, mercury, and lead (metals).

The lightest chemical elements, including hydrogen, helium (and smaller amounts of lithium, beryllium and boron), are thought to have been produced by various cosmic processes during the Big Bang and cosmic-ray spallation. Production of heavier elements, from carbon to the very heaviest elements, proceeded by stellar nucleosynthesis, and these were made available for later solar system and planetary formation by planetary nebulae and supernovae, which blast these elements into space. The high abundance of oxygen, silicon, and iron on Earth reflects their common production in such stars, after the lighter gaseous elements and their compounds have been subtracted. While most elements are generally viewed as stable, a small amount of natural transformation of one element to another also occurs at the present time through decay of radioactive elements as well as other natural nuclear processes.

Dietary minerals (also known as mineral nutrients) are the chemical elements required by living organisms, other than the four elements carbon, hydrogen, nitrogen, and oxygen present in common organic molecules. The term is archaic, as it describes chemical elements rather than actual minerals.

Minerals in order of abundance in the human body include the seven major minerals calcium, phosphorus, potassium, sulfur, sodium, chlorine, and magnesium. Important "trace" or minor minerals, necessary for mammalian life, include iron, cobalt, copper, zinc, molybdenum, iodine, and selenium (see below for detailed discussion).

Calcium is the chemical element with symbol Ca and atomic number 20. Calcium is a soft gray alkaline earth metal, and is the fifth-most-abundant element by mass in the Earth's crust. Calcium is also the fifth-most-abundant dissolved ion in seawater by both molarity and mass, after sodium, chloride, magnesium, and sulfate.

Calcium is essential for living organisms, in particular in cell physiology, where movement of the calcium ion Ca2+ into and out of the cytoplasm functions as a signal for many cellular processes. As a major material used in mineralization of bone, teeth and shells, calcium is the most abundant metal by mass in many animals.


A reducing agent (also called a reductant or reducer) is the element or compound in an oxidation-reduction reaction that donates an electron to another species. Because the reducing agent is losing electrons, we say it has been oxidized.

This means that there must be an "oxidizer"; because if any chemical is an electron donor (reducer), another must be an electron recipient (oxidizer). Thus reducers are "oxidized" by oxidizers and oxidizers are "reduced" by reducers; reducers are by themselves reduced (have more electrons) and oxidizers are by themselves oxidized (have fewer electrons). For example, consider the following reaction:

Calcium chloride

Calcium(II) chloride,
Calcium dichloride,

Calcium Sodium Chlorine

Tricalcium diphosphate

Tribasic calcium phosphate

Salt Education Health Medical Pharma

Sodium chloride

Common salt


Related Websites:

Terms of service | About