What is the benefit of a short/long arm suspension system?


Long arms are longer than stock chromoly control arms and ew suspension mounting points using a 3-piece belly skid plate.

More Info:

MacPherson strut
The MacPherson strut is a type of car suspension system which uses the axis of a telescopic damper as the upper steering pivot. It is widely used in modern vehicles and named after Earle S. MacPherson, who developed the design. Earle S. MacPherson developed the design of the strut in 1949 partially based on designs created by Guido Fornaca of FIAT in the mid-1920s. It is possible the MacPherson was inspired by the suspension on the French Cottin-Desgouttes that used the same design, but with leaf springs. Cottin-Desgouttes front suspension was in turn inspired by J. Walter Christie's 1904 design and he was inspired by plants. The first car to feature MacPherson struts was the 1949 Ford Vedette, and it was also adopted in the 1951 Ford Consul and later Zephyr. MacPherson originally created the design for use at all four wheels (Mitsubishi Starion, for example), but in practice it is more commonly used for the front suspension only, where it provides a steering pivot (kingpin) as well as a suspension mounting for the wheel. MacPherson struts consist of a wishbone or a substantial compression link stabilized by a secondary link which provides a bottom mounting point for the hub or axle of the wheel. This lower arm system provides both lateral and longitudinal location of the wheel. The upper part of the hub is rigidly fixed to the inner part of the strut proper, the outer part of which extends upwards directly to a mounting in the body shell of the vehicle. To be really successful, the MacPherson strut required the introduction of unibody (or monocoque) construction, because it needs a substantial vertical space and a strong top mount, which unibodies can provide, while benefiting them by distributing stresses. The strut will usually carry both the coil spring on which the body is suspended and the shock absorber, which is usually in the form of a cartridge mounted within the strut (see coilover). The strut also usually has a steering arm built into the lower inner portion. The whole assembly is very simple and can be preassembled into a unit; also by eliminating the upper control arm, it allows for more width in the engine compartment, which is useful for smaller cars, particularly with transverse-mounted engines such as most front wheel drive vehicles have. It can be further simplified, if needed, by substituting an anti-roll bar (torsion bar) for the radius arm. For those reasons, it has become almost ubiquitous with low cost manufacturers. Furthermore, it offers an easy method to set suspension geometry. Although it is a popular choice, due to its simplicity and low manufacturing cost, the design has a few disadvantages in the quality of ride and the handling of the car. Geometric analysis shows it cannot allow vertical movement of the wheel without some degree of either camber angle change, sideways movement, or both. It is not generally considered to give as good handling as a double wishbone or multi-link suspension, because it allows the engineers less freedom to choose camber change and roll center. Another drawback is that it tends to transmit noise and vibration from the road directly into the body shell, giving higher noise levels and a "harsh" feeling to the ride compared with double wishbones][, requiring manufacturers to add extra noise reduction or cancellation and isolation mechanisms. Despite these drawbacks, the MacPherson strut setup is still used on high performance cars such as the Porsche 911, several Mercedes-Benz models and lower BMWs models (including the new Mini but excluding the 2007 X5, 2009 7-series, 2011 5-series and 5-series GT). The Porsche 911 up until the 1989 model year (964) use MacPherson strut designs that do not have coil springs, using a torsion bar suspension instead.

Suspension (motorcycle)
A motorcycle's suspension serves a dual purpose: contributing to the vehicle's handling and braking, and providing safety and comfort by keeping the vehicle's passengers comfortably isolated from road noise, bumps and vibrations. The typical motorcycle has a pair of fork tubes for the front suspension, and a swingarm with one or two shock absorbers for the rear suspension. The most common form of front suspension for a modern motorcycle is the telescopic fork. Other fork designs are girder forks, suspended on sprung parallel links (not common since the 1940s) and bottom leading link designs, not common since the 1960s. Some manufacturers (e.g. Greeves) used a version of the swinging arm for front suspension on their motocross designs. A single-sided version of the idea is also used in motor scooters such as the Vespa. The Hub-center steering as developed by Ascanio Rodorigo, on a concept associated to Massimo Tamburini is a complex front swingarm alternative system that entails suspension and steering, as seen in projects such as Bimota Tesi and Vyrus motorcycles. In 1934 Nimbus was the first manufacturer to produce a motorcycle with hydraulically damped telescopic forks. Most motorcycles today use telescopic forks for the front suspension. The forks can be most easily understood as simply large hydraulic shock absorbers with internal coil springs. They allow the front wheel to react to imperfections in the road while isolating the rest of the motorcycle from that motion. The top of the forks are connected to the motorcycle's frame in a triple tree clamp (otherwise known to British riders as the top yoke and bottom yoke), which allows the forks to be turned in order to steer the motorcycle. The bottom of the forks are connected to the front axle around which the front wheel spins. On typical telescopic forks, the upper portion, known as the fork tubes, slide inside the fork bodies, which are the lower part of the forks. As the tubes slide in and out of the body they are telescoping, thus the term telescopic forks. The fork tubes must be smooth to seal the fork oil inside the fork, and typically have a mirrored finish, though some fork tubes, especially those on off-road motorcycles, are enclosed in plastic protective sleeves, known as gaiters. "Upside-down" (USD) forks, also known as inverted forks, are installed inverted compared to conventional telescopic forks. The slider bodies are at the top, fixed in the triple clamps, and the stanchion tubes are at the bottom, fixed to the axle. This USD arrangement has two advantages: (i) it decreases the unsprung weight of the motorcycle; and (ii) it increases torsional stiffness, which can improve handling. Two disadvantages of USD forks are: (i) they are more expensive than conventional telescopic forks; and (ii) they are liable to lose all their damping oil should an oil seal fail. USD forks are typically found on sportbikes, though the Honda Valkyrie featured USD forks. Motorcycle suspensions are designed so that the springs are always under compression, even when fully extended. Pre-load is used to adjust the initial position of the suspension with the weight of the motorcycle and rider acting on it. The difference between the fully extended length of the suspension and the length compressed by the weight of the motorcycle and rider is called "total sag" or "race sag". Total sag is set to optimize the initial position of the suspension to avoid bottoming out or topping out under normal riding conditions. "Bottoming out" occurs when the suspension is compressed to the point where it mechanically cannot compress any more. Topping out occurs when the suspension extends fully and cannot mechanically extend any more. Increasing pre-load increases the initial force on the spring thereby reducing total sag. Decreasing pre-load decreases the initial force in the spring thereby increasing total sag. Some motorcycles allow adjustment of pre-load by changing the air pressure inside the forks. Valves at the top of the forks allow air to be added or released from the fork. More air pressure gives more pre-load, and vice versa. Some telescopic forks have external adjustments for damping. The adjuster controls a bleed valve to bypass the cartridge. When closed, all oil must travel through the cartridge, when opened it allows some of the oil to bypass the cartridge, reducing damping. Since forks act as hydraulic dampers, changing the weight of the fork oil will alter the damping rate. Cartridge forks use internal cartridges with various leaf springs covering orifices to control the damping of the fork. Some of the leaf springs lift with little force allow fluid to flow through the orifice. Other springs require greater force to lift and allow flow. This gives the fork digressive damping, allowing it to be stiff over small bumps, but get relatively softer over larger bumps. Also, the springs only allow flow in one direction, so one set of springs controls compression damping, and another rebound damping. This allows the dampings to be set separately. Cartridge emulators are aftermarket parts that make non-cartrdige forks behave like cartridge forks, although they generally use a single coil spring rather than a stack of leaf springs. In 2007 the gas-charged bolt-in cartridge set for modern sportbike forks became available. This kit is legal for supersport styled classes of racing, which regulations do not allow a complete fork replacement, and force competitors to use the stock fork casings. Applying the brakes of a moving motorcycle increases the load borne by the front wheel and decrease the load borne by the rear wheel due to a phenomenon called load transfer. For a detailed explanation and a sample calculation, see the braking section of the Bicycle and motorcycle dynamics article. If the motorcycle is equipped with telescopic forks, the added load on the front wheel is transmitted through the forks, which compress. This shortening of the forks causes the front end of the bike to move lower, and this is called brake dive. telescopic forks are particularly prone to this, unlike leading link designs. Brake dive can be disconcerting to the rider, who may feel like he or she is about to be thrown over the front of the motorcycle. If the bike dives so far as to bottom out the front forks, it can also cause handling and braking problems. One of the purposes of a suspension is to help maintain contact between the tire and road. If the suspension has bottomed out, it is no longer moving as it should, and is no longer helping to maintain contact. While excessive brake dive is disconcerting, and bottoming out can cause loss of traction, a certain amount of brake dive reduces the rake and trail of the motorcycle, allowing it to more easily turn. This is especially important to racers trail braking on entrance to corners. Brake dive with telescopic forks can be reduced by either increasing the spring rate of the fork springs, or increasing the compression damping of the forks. However, all of these changes make the motorcycle less pleasant to ride on rough roads, since the front end will feel stiffer, in the 1980s various manufacturers attempted to get round this by methods of anti-dive such as: With the advent of cartridge forks, which allow more low speed damping and less high speed damping than the previous damping rod forks, separate anti-dive mechanisms have generally fallen out of use. Another method to reduce or eliminate brake dive in telescopic forks is to use a reactive link or torque arm to connect the braking components to the motorcycle frame via the triple clamp. Some fork designs mitigate dive, eliminate it, or even reverse it without affecting the front suspension adversely. The Earles fork is among the latter; when braking the front brake hard, the front end of the motorcycle actually rises. BMW's Telelever fork is designed to nearly eliminate dive, and could have been designed to eliminate it completely if the manufacturer chose to do so. Leading link front forks, such as used on some Ural motorcycles, can also be designed either to reduce or eliminate dive. The endurance racer "Nessie", built by the Mead & Tomkinson racing team, used an adapted version of Difazio hub-center steering, whereby braking forces were directed to the frame via a pivoted fork (rather than through the steering head). This allowed neutral steering and an absence of brake dive. The Saxon-Motodd (marketed as Telelever by BMW) has an additional swingarm that mounts to the frame and supports the spring. This causes the rake and trail to increase during braking instead of decreasing as with traditional telescopic forks. The Hossack/Fior (marketed as Duolever by BMW) separates completely the suspension from steering forces. It was developed by Norman Hossack though used by Claude Fior and John Britten on racebikes. Hossack himself described the system as a 'steered upright'. In 2004 BMW announced the K1200S with a new front suspension that is based upon this design. A single-sided front swingarm suspension was used on the Yamaha GTS1000, introduced in 1993. The GTS used the RADD front suspension designed by James Parker][. A single sided girder fork was use on the German Imme R100 motorcycle between 1949 and 1951, and the Vespa scooter has a single-sided trailing-link fork. More recently][, the ItalJet "Dragster" scooter also uses a single-sided swingarm suspension, though unlike the GTS1000 there is no upper control arm; the upper part of the suspension on the Dragster serves only to transmit steering input. While front suspensions were almost universally adopted before World War I, several manufacturers did not use rear suspension on their bikes until after World War II. However, motorcycles with rear suspension were offered to the public before World War I. Notable among these are the 1913 Indian Single with a swingarm suspended from a leaf spring and the 1913 Pope with wheels supported on a pair of plungers which were each suspended by a coil spring. Several motorcycles before and immediately after World War II used plunger suspension in which the vertical movement of the rear axle was controlled by plungers suspended by springs. Notable manufacturers of bikes with plunger suspension include Adler, Ariel, BMW, BSA, Indian, MZ, Norton, and Zündapp The basic motorcycle swingarm is a rectangle, with one short side connected to the motorcycle's frame with bearings so that it can pivot. The other short side is the rear axle around which the rear wheel turns. The long sides are connected to the motorcycle's frame or rear sub-frame with one or two shocks with coil-over springs. In production motorcycles, swingarms are not exactly rectangular, but their function can be more easily understood by thinking of them as such. When a swingarm is present on only one side of the motorcycle, this is known as a swingarmsingle-sided. Notable examples include the Honda VFR800 and the BMW R- and K-series. Single-sided swingarms make rear-wheel removal easier, though they generally increase the unsprung weight of the rear suspension. This is due to the additional material required to give identical torsional rigidity to a conventional (two-sided) swingarm setup. For this reason sports bikes are rarely seen using the setup. Notable exclusions are the Ducati 916 which was intended to be taken endurance racing, the MV Agusta f4 which has a hollow interior for reducing weight (a magnesium version is also available), and the Ducati 1098, which was given a single sided swingarm purely for styling reasons. On many shaft-drive motorcycles the drive shaft is contained in one of the long sides of the swingarm. Notable examples include all post-1955 BMW models prior to BMW's use of the single-sided swingarms, Urals, many Moto Guzzi twins, the Honda Goldwing, the Yamaha XS Eleven, and the Yamaha FJR1300. The BMW R- and K-series combine a shaft-drive contained in the swing arm with a single-sided swingarm, and the combination is marketed as the Paralever. Newer Moto Guzzi motorcycles use a similar arrangement marketed as the CA.R.C. ("CArdano Reattivo Compatto" - Compact Reactive Shaft Drive). For motorcycles with chain drives, the rear axle can be adjusted forward and back in relation to the swingarm, to adjust chain tension. The hydraulic shock absorbers used on the rear suspensions of motorcycles are essentially the same as those used in other vehicle applications. Motorcycle shocks do differ slightly in that they nearly always use a coil-over spring. In other words, the spring for the rear suspension is a coil spring that is installed over, or around, the shock. In terms of adjustment, rear shocks span the range from no adjustments whatsoever to pre-load adjustments only to racing shocks with adjustments for length, pre-load, and four different kinds of damping. Most shocks have internal oil reservoirs, but some have external ones, and some offer air-assisted damping. A number of companies offer custom-built rear shocks for motorcycles. These shocks are assembled for a specific motorcycle and rider combination, taking into account the characteristics of the motorcycle, the weight of the rider, and the rider's preferred riding style/aggressiveness. Twinshock refers to motorcycles that have two shock absorbers. Generally, this term is used to denote a particular era of motorcycles, and is most frequently used when describing off-road motorcycles. During the late 1970s and 1980s, motorcycle rear suspension design and performance underwent tremendous advances. The primary goal and result of these advances were increased rear wheel travel, as measured in the how far the rear wheel could move up and down. Before this period of intense focus on rear suspension performance, most off-road motorcycles had rear wheel travel of about 3.5–4 inch (9–10 cm). At the end of this period, most of these motorcycles had rear wheel travel of approximately 12 inch (30 cm). At the beginning of this period, various rear suspension designs were used to reach this degree of performance. However, by the end of this period, a design consisting of using only one shock absorber (instead of two) was universally accepted and used. Motorcycles with only one shock absorber are called monoshock motorcycles. The performance of monoshock motorcycles was vastly superior to twin shock motorcycles. Accordingly, this design distinction is readily used to categorize motorcycles. Since monoshock motorcycles have been the norm since the 1980s, the term "twinshock" is now used to categorize vintage motorcycles. This distinction is important in that it provides classes used for vintage motorcycle competition. For example, vintage motocross races are held for older motocross motorcycles. To prevent the better-performing monoshock motorcycles from dominating the competition, there are separate competition classes for monoshock and twinshock motorcycles, which prevents them from competing directly against each other. On a motorcycle with a mono-shock rear suspension, a single shock absorber connects the rear swingarm to the motorcycle's frame. Typically this lone shock absorber is in front of the rear wheel, and uses a linkage to connect to the swing arm. Such linkages are frequently designed to give a rising rate of damping for the rear. Mono-shocks are said to eliminate torque to the swingarm and provide more consistent handling and braking][. Having only one shock absorber, they tend to be easier to adjust than twin-shock systems. Honda refers to its mono-shock designs as Pro-link suspensions, Kawasaki as Uni-Track, Suzuki as Full-Floater, and Yamaha as Monocross .

Air suspension
Air suspension is a type of vehicle suspension powered by an electric or engine driven air pump or compressor. This compressor pumps the air into a flexible bellows, usually made from textile-reinforced rubber. This in turn inflates the bellows, and raises the chassis from the axle. Air suspension is often used in place of conventional steel springs, and in heavy vehicle applications such as buses and trucks. If the engine is left off for an extended period, the vehicle will gradually settle to the ground. The purpose of air suspension is to provide a smooth, constant ride quality and in some cases it is self-leveling. Although traditionally called air bags or air bellows, the correct term is air spring (although these terms are also used to describe just the rubber bellows element with its end plates). While not using high pressure mineral oil (as does the Citroën system), the system aims to achieve a result similar to the hydropneumatic suspension arrangement introduced in 1954 by Citroën. In 1901 William W. Humphreys patented (#673682) a 'Pneumatic Spring for Vehicles'. The design consisted of a left and right air spring longitudinally channeled nearly the length of the vehicle. The channels were con-caved to receive two long pneumatic cushions. Each one was closed at one end and provided with an air-valve at the other end. An early attempted implementation of air suspension was by Messier][ in the 1920s. Immediately following World War II, William Bushnell Stout built one last prototype Stout Scarab, called the Stout Scarab Experimental. It was shown in 1946 and was more conventional in appearance than the prewar Scarabs, although still equipped with a rear engine. It was 2-door and featured a wraparound windshield. It featured the world's first fiberglass body, and like its metal counterparts, it was monocoque, built up out of only eight separate pieces. More importantly, it featured the world's first fully functioning air suspension system, previously developed by Firestone. It never went into production. With a "leg up" on other companies,][ General Motors used its experience with commercial bus air suspension to introduce systems for its automobile lines, introducing it as standard equipment on the Cadillac Eldorado Brougham in the 1957 model year. The following year it was offered as optional equipment on all Cadillacs, and in 1959 it was made standard equipment on all Eldorados. Air bellows at each wheel replaced standard coil springs, and had sensors to keep the car level under load and in turns. It was too slow to react in sudden maneuvers. Period reviews rated the air suspension somewhat superior in ride quality, but not dramatically so. Some reliability issues plagued these systems as well. Cadillac discontinued air suspension after the 1960 model year. Air suspension would not return to standard production on American-built cars until Lincoln Motor Company introduced it as standard equipment on the Lincoln Continental Mark VII in the 1984 model year. In the meantime, Mercedes Benz had been selling its W112 Chassis series cars, the 300SE sedans and Coupes/Cabriolets with air suspension since 1962. A highly successful system using a Bosch main valve (distributing the air pressure), two Bosch axle valves on the front axle and one valve of the rear axle. These controlled an air spring on each wheel axle .This was entirely different to GM system in that the airspring uses a small bag sitting on a cone. As the car load increases on the bag it rolls down the cone and this in turn increases the air pressure in the bag. Because of the cone shape the suspension is infinitely variable. The axle valves do three jobs; they are fed reduced air pressure to the front and keep the bag supplied with sufficient air to keep the ride height constant. When the load is relieved they release air back to the car's air dryer. On the later versions, as found on the next chassis series, the W109, they have a ride height adjustment feature. The main valve has an extra setting the W112 cars didn't have — the ability to raise the car up to 50 mm above the normal ride height. The rear valve is fed full air pressure from the reservoir in front, which in turn is kept filled by the air compressor mounted on the engine. It's a khorr][ single cylinder device. In 1964 Mercedes introduced its W100 Chassis car, the 600 Grosse or Grand Mercedes, which remained in production until 1984. The air springs on these are bigger version of those found on the W112 and W109 cars. On the 600 the air also powers the brake servo and the biggest horn ever fitted to a car. This is a link to the international M100 Group,the club for owners of the earlier air suspended Mercedes Benz Cars. because there are still many air suspended Mercedes being driven throughout the world there is a demand for the repair of the air valves .New bags are available from Mercedes parts suppliers. This is a link to a German site showing how the Bosch air valves work. Vehicles that use air suspension today][ include models from Maybach, Rolls-Royce, Lexus, Jeep Grand Cherokee, Cadillac (GM), Mercedes-Benz, Land Rover/Range Rover, SsangYong, Audi, Subaru, Volkswagen, and Lincoln and Ford, among others. Citroën now][ feature Hydractive suspension, a computer controlled version of their Hydropneumatic system, which features sport and comfort modes, lowers the height of the car at high speeds and continues to maintain ride height when the engine is not running. The air suspension designs from Land Rover, SsangYong, Subaru and some Audi, Volkswagen, and Lexus models, feature height adjustable suspension controlled by the driver, suitable for clearing rough terrain. The Lincoln Continental and Mark VIII also featured an air suspension system in which the driver could choose how sporty or comfortable they wanted the suspension to feel. These suspension settings were also linked to the memory seat system, meaning that the car would automatically adjust the suspension to individual drivers. The control system in the Mark VIII lowered the suspension by about 25 mm (1 inch) at speeds exceeding about 100 km/h (60 mph) for improved aerodynamic performance. Due to the many advantages air suspensions provide, and with the advancement of new materials and technologies, these systems are being designed on many future platforms. This is especially important as car manufacturers strive to improve gas mileage by reducing weight and utilizing active suspension technology to maximize performance. The electric car maker Tesla Motors offers "Active Air Suspension" as an option on the Tesla Model S as a means to automatically lower the vehicle for optimized aerodynamics and increased range while allowing the user to change the setting as desired. In addition to passenger cars, air suspension is broadly used on semi trailers, trains (primarily passenger trains) and buses, which are all transportation sectors that helped pioneer the use and design of air suspension. One application was on EMD's experimental Aerotrain. Over the last decade or so air suspension has become extremely popular in the custom automobile culture: street rods, trucks, cars, and even motorcycles may have air springs. They are used in these applications to provide an adjustable suspension which allows vehicles to sit extremely low, yet be able rise to a level high enough to manoeuver over obstacles and inconsistencies on paved surfaces. These systems generally employ small, electric or engine-driven air compressors which sometimes fill an on-board air receiver tank which stores compressed air for use in the future without delay. High-pressured industrial gas bottles (such as nitrogen or carbon dioxide tanks used to store shielding gases for welding) are sometimes used in more radical air suspension setups. Either of these reservoir systems may be fully adjustable, being able to adjust each wheel's air pressure individually. This allows the user to tilt the vehicle side-to-side, front-to-back, in some instances "hit a 3-wheel" (contort the vehicle so one wheel lifts up from the ground) or even "hop" the entire vehicle into the air. When a pressure reservoir is present, the flow of air or gas is commonly controlled with pneumatic solenoid valves. This allows the user to make adjustments by simply pressing a momentary-contact electric button or switch. The installation and configuration of these systems varies for different makes and models but the underlying principle remains the same. The metal spring (coil or leaf) is removed, and an air bag, also referred to as an air spring, is inserted or fabricated to fit in the place of the factory spring. When air pressure is supplied to the air bag, the suspension can be adjusted either up or down (lifted or lowered). For vehicles with leaf spring suspension such as pickup trucks, the leaf spring is sometimes eliminated and replaced with a multiple-bar linkage. These bars are typically in a trailing arm configuration and the air spring may be situated vertically between a link bar or the axle housing and a point on the vehicle's frame. In other cases, the air bag is situated on the opposite side of the axle from the main link bars on an additional cantilever member. If the main linkage bars are oriented parallel to the longitudinal (driving) axis of the car, the axle housing may be constrained laterally with either a Panhard rod or Watt's linkage. In some cases, two of the link bars may be combined into a triangular shape which effectively constrains the vehicles axle laterally. Often, owners may desire to lower their vehicle to such an extent that they must cut away portions of the frame for more clearance. A reinforcement member commonly referred to as a C-notch is then bolted or welded to the vehicle frame in order to maintain structural integrity. Specifically on pickup trucks, this process is termed "notching" because a portion (notch) of the cargo bed may also be removed, along with the wheel wells, to provide maximum axle clearance. For some, it is desirable to have the vehicle so low that the frame rests on the ground when the air bags are fully deflated. Air bag or air strut failure is usually caused by wet rot, due to old age, or moisture within the air system that damages it from the inside. Air ride suspension parts may fail because rubber dries out. Punctures to the air bag may be caused from debris on the road. With custom applications, improper installation may cause the air bags to rub against the vehicle's frame or other surrounding parts, damaging it. The over-extension of an airspring which is not sufficiently constrained by other suspension components, such as a shock absorber, may also lead to the premature failure of an airspring through the tearing of the flexible layers. Failure of an airspring may also result in complete immobilization of the vehicle, since the vehicle will rub against the ground or be too high to move. Air line failure is a failure of the tubing which connects the air bags or struts to the rest of the air system, and is typically DOT-approved nylon air brake line. This usually occurs when the air lines, which must be routed to the air bags through the chassis of the vehicle, rub against a sharp edge of a chassis member or a moving suspension component, causing a hole to form. This mode of failure will typically take some time to occur after the initial installation of the system, as the integrity of a section of air line is compromised to the point of failure due to the rubbing and resultant abrasion of the material. An air-line failure may also occur if a piece of road debris hits an air line and punctures or tears it, although this is unlikely to occur in normal road use. It does occur in harsh off-road conditions but it still not common if correctly installed. Air fitting failure usually occurs when they are first fitted or very rarely in use. Cheap low quality components tend to be very unreliable. Air fittings are used to connect components such as bags, valves, and solenoids to the airline that transfers the air. They are screwed into the component and for the most part push-in or push-to-fit DOT line is then inserted into the fitting. Compressor failure is primarily due to leaking air springs or air struts. The compressor will burn out trying to maintain the correct air pressure in a leaking air system. Compressor burnout may also be caused by moisture from within the air system coming into contact with its electronic parts. This is far more likely to occur with low specification compressors with insufficient duty cycle which are often purchased due to low cost. For redundancy in the system two compressors are often a better option. In Dryer failure the dryer, which functions to remove moisture from the air system, eventually becomes saturated and unable to perform that function. This causes moisture to build up in the system and can result in damaged air springs and/or a burned out compressor. Most factory standard coaches have a system called ferry lift. This allows the air suspension to be raised above the normal ride height level to originally aid loading and unloading the vehicle on and off ferries due to their steep ramps and risk of grounding out, but can be used on rough ground or on steep crests. Although the ferry lift may be installed on some buses, the Kneel Down facility is more common on public transport buses. This allows air to be released from the suspension system to decrease the step that passengers have to climb to enter the bus as they usually level out to curb level. The Kneel Down facility is also used when using the built in wheel chair ramps.

Suspension (vehicle)
Suspension is the term given to the system of springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two. Suspension systems serve a dual purpose — contributing to the vehicle's roadholding/handling and braking for good active safety and driving pleasure, and keeping vehicle occupants comfortable and reasonably well isolated from road noise, bumps, and vibrations,etc. These goals are generally at odds, so the tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the road or ground forces acting on the vehicle do so through the contact patches of the tires. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. The design of front and rear suspension of a car may be different. This article is primarily about four-wheeled (or more) vehicle suspension. For information on two-wheeled vehicles' suspensions see the motorcycle suspension, motorcycle fork, bicycle suspension, and bicycle fork articles. Leaf springs have been around since the early Egyptians. Ancient military engineers used leaf springs in the form of bows to power their siege engines, with little success at first. The use of leaf springs in catapults was later refined and made to work years later. Springs were not only made of metal, a sturdy tree branch could be used as a spring, such as with a bow. By the early 19th century, most British horse carriages were equipped with springs; wooden springs in the case of light one-horse vehicles to avoid taxation, and steel springs in larger vehicles. These were made of low-carbon steel and usually took the form of multiple layer leaf springs. The British steel springs were not well suited for use on America's rough roads of the time, and could even cause coaches to collapse if cornered too fast. In the 1820s, the Abbot Downing Company of Concord, New Hampshire re-discovered the antique system whereby the bodies of stagecoaches were supported on leather straps called "thoroughbraces", which gave a swinging motion instead of the jolting up and down of a spring suspension (the stagecoach itself was sometimes called a "thoroughbrace"). Automobiles were initially developed as self-propelled versions of horse drawn vehicles. However, horse drawn vehicles had been designed for relatively slow speeds and their suspension was not well suited to the higher speeds permitted by the internal combustion engine. In 1901 Mors of Paris first fitted an automobile with shock absorbers. With the advantage of a dampened suspension system on his 'Mors Machine', Henri Fournier won the prestigious Paris-to-Berlin race on the 20th of June 1901. Fournier's superior time was 11 hrs 46 min 10 sec, while the best competitor was Léonce Girardot in a Panhard with a time of 12 hrs 15 min 40 sec. In 1920, Leyland Motors used torsion bars in a suspension system. In 1922, independent front suspension was pioneered on the Lancia Lambda and became more common in mass market cars from 1932. The spring rate (or suspension rate) is a component in setting the vehicle's ride height or its location in the suspension stroke. When a spring is compressed or stretched, the force it exerts is proportional to its change in length. The spring rate or spring constant of a spring is the change in the force it exerts, divided by the change in deflection of the spring. Vehicles which carry heavy loads will often have heavier springs to compensate for the additional weight that would otherwise collapse a vehicle to the bottom of its travel (stroke). Heavier springs are also used in performance applications where the loading conditions experienced are more extreme. Springs that are too hard or too soft cause the suspension to become ineffective because they fail to properly isolate the vehicle from the road. Vehicles that commonly experience suspension loads heavier than normal have heavy or hard springs with a spring rate close to the upper limit for that vehicle's weight. This allows the vehicle to perform properly under a heavy load when control is limited by the inertia of the load. Riding in an empty truck used for carrying loads can be uncomfortable for passengers because of its high spring rate relative to the weight of the vehicle. A race car would also be described as having heavy springs and would also be uncomfortably bumpy. However, even though we say they both have heavy springs, the actual spring rates for a 2,000 lb (910 kg) race car and a 10,000 lb (4,500 kg) truck are very different. A luxury car, taxi, or passenger bus would be described as having soft springs. Vehicles with worn out or damaged springs ride lower to the ground which reduces the overall amount of compression available to the suspension and increases the amount of body lean. Performance vehicles can sometimes have spring rate requirements other than vehicle weight and load. Spring rate is a ratio used to measure how resistant a spring is to being compressed or expanded during the spring's deflection. The magnitude of the spring force increases as deflection increases according to Hooke's Law. Briefly, this can be stated as where Spring rate is confined to a narrow interval by the weight of the vehicle,load the vehicle will carry, and to a lesser extent by suspension geometry and performance desires. Spring rates typically have units of N/mm (or lbf/in). An example of a linear spring rate is 500 lbf/in. For every inch the spring is compressed, it exerts 500 lbf. A non-linear spring rate is one for which the relation between the spring's compression and the force exerted cannot be fitted adequately to a linear model. For example, the first inch exerts 500 lbf force, the second inch exerts an additional 550 lbf (for a total of 1050 lbf), the third inch exerts another 600 lbf (for a total of 1650 lbf). In contrast a 500 lbf/in linear spring compressed to 3 inches will only exert 1500 lbf. The spring rate of a coil spring may be calculated by a simple algebraic equation or it may be measured in a spring testing machine. The spring constant k can be calculated as follows: where d is the wire diameter, G is the spring's shear modulus (e.g., about 12,000,000 lbf/in² or 80 GPa for steel), and N is the number of wraps and D is the diameter of the coil. Wheel rate is the effective spring rate when measured at the wheel. This is as opposed to simply measuring the spring rate alone. Wheel rate is usually equal to or considerably less than the spring rate. Commonly, springs are mounted on control arms, swing arms or some other pivoting suspension member. Consider the example above where the spring rate was calculated to be 500 lbs/inch, if you were to move the wheel 1 in (2.5 cm) (without moving the car), the spring more than likely compresses a smaller amount. Lets assume the spring moved 0.75 in (19 mm), the lever arm ratio would be 0.75:1. The wheel rate is calculated by taking the square of the ratio (0.5625) times the spring rate, thus obtaining 281.25 lbs/inch. Squaring the ratio is because the ratio has two effects on the wheel rate. The ratio applies to both the force and distance traveled. Wheel rate on independent suspension is fairly straightforward. However, special consideration must be taken with some non-independent suspension designs. Take the case of the straight axle. When viewed from the front or rear, the wheel rate can be measured by the means above. Yet because the wheels are not independent, when viewed from the side under acceleration or braking the pivot point is at infinity (because both wheels have moved) and the spring is directly inline with the wheel contact patch. The result is often that the effective wheel rate under cornering is different from what it is under acceleration and braking. This variation in wheel rate may be minimized by locating the spring as close to the wheel as possible. Wheel rates are usually summed and compared with the sprung mass of a vehicle to create a "ride rate" and corresponding suspension natural frequency in ride (also referred to as "heave"). This can be useful in creating a metric for suspension stiffness and travel requirements for a vehicle. Roll rate is analogous to a vehicle's ride rate, but for actions that include lateral accelerations, causing a vehicle's sprung mass to roll about its roll axis. It is expressed as torque per degree of roll of the vehicle sprung mass. It is influenced by factors including but not limited to vehicle sprung mass, track width, CG height, spring and damper rates, roll center heights of front and rear, anti-roll bar stiffness and tire pressure/construction. The roll rate of a vehicle can, and usually differs front to rear, which allows for the tuning ability of a vehicle for transient and steady state handling. The roll rate of a vehicle does not change the total amount of weight transfer on the vehicle, but shifts the speed at which and percentage of weight transferred on a particular axle to another axle through the vehicle chassis. Generally, the higher the roll rate on an axle of a vehicle, the faster and higher percentage the weight transfer on that axle. Roll couple percentage is a simplified method of describing lateral load transfer distribution front to rear, and subsequently handling balance. It is the effective wheel rate, in roll, of each axle of the vehicle as a ratio of the vehicle's total roll rate. It is commonly adjusted through the use of anti-roll bars, but can also be changed through the use of different springs. Weight transfer during cornering, acceleration or braking is usually calculated per individual wheel and compared with the static weights for the same wheels. The total amount of weight transfer is only affected by four factors: the distance between wheel centers (wheelbase in the case of braking, or track width in the case of cornering) the height of the center of gravity, the mass of the vehicle, and the amount of acceleration experienced. The speed at which weight transfer occurs as well as through which components it transfers is complex and is determined by many factors including but not limited to roll center height, spring and damper rates, anti-roll bar stiffness and the kinematic design of the suspension links. In most conventional applications, when weight is transferred though intentionally compliant elements such as springs, dampers and anti-roll bars, the weight transfer is said to be "elastic", while the weight which is transferred through more rigid suspension links such as A-arms and toe links is said to be "geometric". Unsprung weight transfer is calculated based on the weight of the vehicle's components that are not supported by the springs. This includes tires, wheels, brakes, spindles, half the control arm's weight and other components. These components are then (for calculation purposes) assumed to be connected to a vehicle with zero sprung weight. They are then put through the same dynamic loads. The weight transfer for cornering in the front would be equal to the total unsprung front weight times the G-Force times the front unsprung center of gravity height divided by the front track width. The same is true for the rear. Sprung weight transfer is the weight transferred by only the weight of the vehicle resting on the springs, not the total vehicle weight. Calculating this requires knowing the vehicle's sprung weight (total weight less the unsprung weight), the front and rear roll center heights and the sprung center of gravity height (used to calculate the roll moment arm length). Calculating the front and rear sprung weight transfer will also require knowing the roll couple percentage. The roll axis is the line through the front and rear roll centers that the vehicle rolls around during cornering. The distance from this axis to the sprung center of gravity height is the roll moment arm length. The total sprung weight transfer is equal to the G-force times the sprung weight times the roll moment arm length divided by the effective track width. The front sprung weight transfer is calculated by multiplying the roll couple percentage times the total sprung weight transfer. The rear is the total minus the front transfer. Jacking forces are the sum of the vertical force components experienced by the suspension links. The resultant force acts to lift the sprung mass if the roll center is above ground, or compress it if underground. Generally, the higher the roll center, the more jacking force is experienced. Travel is the measure of distance from the bottom of the suspension stroke (such as when the vehicle is on a jack and the wheel hangs freely) to the top of the suspension stroke (such as when the vehicle's wheel can no longer travel in an upward direction toward the vehicle). Bottoming or lifting a wheel can cause serious control problems or directly cause damage. "Bottoming" can be caused by the suspension, tires, fenders, etc. running out of space to move or the body or other components of the car hitting the road. The control problems caused by lifting a wheel are less severe if the wheel lifts when the spring reaches its unloaded shape than they are if travel is limited by contact of suspension members (See Triumph TR3B.) Many off-road vehicles, such as desert racers, use straps called "limiting straps" to limit the suspensions downward travel to a point within safe limits for the linkages and shock absorbers. This is necessary, since these trucks are intended to travel over very rough terrain at high speeds, and even become airborne at times. Without something to limit the travel, the suspension bushings would take all the force when the suspension reaches "full droop", and it can even cause the coil springs to come out of their "buckets" if they are held in by compression forces only. A limiting strap is a simple strap, often nylon of a predetermined length, that stops the downward movement at a preset point before the theoretical maximum travel is reached. The opposite of this is the "bump-stop", which protects the suspension and vehicle (as well as the occupants) from violent "bottoming" of the suspension, caused when an obstruction (or hard landing) causes the suspension to run out of upward travel without fully absorbing the energy of the stroke. Without bump-stops, a vehicle that "bottoms out" will experience a very hard shock when the suspension contacts the bottom of the frame or body, which is transferred to the occupants and every connector and weld on the vehicle. Factory vehicles often come with plain rubber "nubs" to absorb the worst of the forces, and insulate the shock. A desert race vehicle, which must routinely absorb far higher impact forces, may be provided with pneumatic or hydro-pneumatic bump-stops. These are essentially miniature shock absorbers (dampeners) that are fixed to the vehicle in a location such that the suspension will contact the end of the piston when it nears the upward travel limit. These absorb the impact far more effectively than a solid rubber bump-stop will, essential because a rubber bump-stop is considered a "last-ditch" emergency insulator for the occasional accidental bottoming of the suspension; it is entirely insufficient to absorb repeated and heavy bottomings such as a high-speed off road vehicle encounters. Damping is the control of motion or oscillation, as seen with the use of hydraulic gates and valves in a vehicles shock absorber. This may also vary, intentionally or unintentionally. Like spring rate, the optimal damping for comfort may be less than for control. Damping controls the travel speed and resistance of the vehicle's suspension. An undamped car will oscillate up and down. With proper damping levels, the car will settle back to a normal state in a minimal amount of time. Most damping in modern vehicles can be controlled by increasing or decreasing the resistance to fluid flow in the shock absorber. See dependent and independent below. Camber changes due to wheel travel, body roll and suspension system deflection or compliance. In general, a tire wears and brakes best at -1 to -2° of camber from vertical. Depending on the tire and the road surface, it may hold the road best at a slightly different angle. Small changes in camber, front and rear, can be used to tune handling. Some race cars are tuned with -2 to -7° camber depending on the type of handling desired and the tire construction. Often, too much camber will result in the decrease of braking performance due to a reduced contact patch size through excessive camber variation in the suspension geometry. The amount of camber change in bump is determined by the instantaneous front view swing arm (FVSA) length of the suspension geometry, or in other words, the tendency of the tire to camber inward when compressed in bump. Roll center height is a product of suspension instant center heights and is a useful metric in analyzing weight transfer effects, body roll and front to rear roll stiffness distribution. Conventionally, roll stiffness distribution is tuned adjusting antiroll bars rather than roll center height (as both tend to have a similar effect on the sprung mass), but the height of the roll center is significant when considering the amount of jacking forces experienced. Due to the fact that the wheel and tire's motion is constrained by the suspension links on the vehicle, the motion of the wheel package in the front view will scribe an imaginary arc in space with an "instantaneous center" of rotation at any given point along its path. The instant center for any wheel package can be found by following imaginary lines drawn through the suspension links to their intersection point. A component of the tire's force vector points from the contact patch of the tire through instant center. The larger this component is, the less suspension motion will occur. Theoretically, if the resultant of the vertical load on the tire and the lateral force generated by it points directly into the instant center, the suspension links will not move. In this case, all weight transfer at that end of the vehicle will be geometric in nature. This is key information used in finding the force-based roll center as well. In this respect the instant centers are more important to the handling of the vehicle than the kinematic roll center alone, in that the ratio of geometric to elastic weight transfer is determined by the forces at the tires and their directions in relation to the position of their respective instant centers. Anti-dive and anti-squat are percentages and refer to the front diving under braking and the rear squatting under acceleration. They can be thought of as the counterparts for braking and acceleration as jacking forces are to cornering. The main reason for the difference is due to the different design goals between front and rear suspension, whereas suspension is usually symmetrical between the left and right of the vehicle. The method of determining the anti-dive or anti-squat depends on whether the suspension linkages react to the torque of braking and accelerating. For example, with inboard brakes and half-shaft driven rear wheels, the suspension linkages do not, but with outboard brakes and a swing-axle driveline, they do. To determine the percentage of front suspension braking anti-dive for outboard brakes, it is first necessary to determine the tangent of the angle between a line drawn, in side view, through the front tire patch and the front suspension instant center, and the horizontal. In addition, the percentage of braking effort at the front wheels must be known. Then, multiply the tangent by the front wheel braking effort percentage and divide by the ratio of the center of gravity height to the wheelbase. A value of 50% would mean that half of the weight transfer to the front wheels, during braking, is being transmitted through the front suspension linkage and half is being transmitted through the front suspension springs. For inboard brakes, the same procedure is followed but using the wheel center instead of contact patch center. Forward acceleration anti-squat is calculated in a similar manner and with the same relationship between percentage and weight transfer. Anti-squat values of 100% and more are commonly used in dragracing, but values of 50% or less are more common in cars which have to undergo severe braking. Higher values of anti-squat commonly cause wheel hop during braking. It is important to note that, while the value of either case...means that all of the weight transfer is being carried through the suspension linkage, this does not mean that the suspension is incapable of carrying additional loads (aerodynamic, cornering, etc.) during an episode of braking or forward acceleration. In other words, no "binding" of the suspension is to be implied. In modern cars, the flexibility is mainly in the rubber bushings. For high-stress suspensions, such as off-road vehicles, polyurethane bushings are available, which offer more longevity under greater stresses. However, due to weight and cost considerations, structures are not made more ridged than necessary. Some vehicles exhibit detrimental vibrations involving the flexing of structural parts, such as when accelerating while turning sharply. Flexibility of structures such as frames and suspension links can also contribute to springing, especially to damping out high frequency vibrations. The flexibility of wire wheels contributed to their popularity in times when cars had less advanced suspensions. For most purposes, the weight of the suspension components is unimportant, but at high frequencies, caused by road surface roughness, the parts isolated by rubber bushings act as a multistage filter to suppress noise and vibration better than can be done with only the tires and springs. (The springs work mainly in the vertical direction.) These are usually small, except that the suspension is related to whether the brakes and differential(s) are sprung. This is the main functional advantage of aluminum wheels over steel wheels. Aluminum suspension parts have been used in production cars, and carbon fiber suspension parts are common in racing cars. Designs differ as to how much space they take up and where it is located. It is generally accepted that MacPherson struts are the most compact arrangement for front-engined vehicles, where space between the wheels is required to place the engine. Inboard brakes (which reduce unsprung weight) are probably avoided more due to space considerations than to cost. The suspension attachment must match the frame design in geometry, strength and rigidity. Certain modern vehicles have height adjustable suspension in order to improve aerodynamics and fuel efficiency. Modern formula cars that have exposed wheels and suspension typically use streamlined tubing rather than simple round tubing for their suspension arms to reduce drag. Also typical is the use of rocker arm, push rod, or pull rod type suspensions that, among other things, place the spring/damper unit inboard and out of the air stream to further reduce air resistance. Production methods improve, but cost is always a factor. The continued use of the solid rear axle, with unsprung differential, especially on heavy vehicles, seems to be the most obvious example. Most conventional suspensions use passive springs to absorb impacts and dampers (or shock absorbers) to control spring motions. Some notable exceptions are the hydropneumatic systems, which can be treated as an integrated unit of gas spring and damping components, used by the French manufacturer Citroën and the hydrolastic, hydragas and rubber cone systems used by the British Motor Corporation, most notably on the Mini. A number of different types of each have been used: Traditional springs and dampers are referred to as passive suspensions — most vehicles are suspended in this manner. The shock absorbers damp out the (otherwise resonant) motions of a vehicle up and down on its springs. They also must damp out much of the wheel bounce when the unsprung weight of a wheel, hub, axle and sometimes brakes and differential bounces up and down on the springiness of a tire. Some have suggested that the regular bumps found on dirt roads (nicknamed "corduroy", but properly corrugations or washboarding) are caused by this wheel bounce, though some evidence exists that it is unrelated to suspension at all. (See washboarding.) If the suspension is externally controlled then it is a semi-active or active suspension — the suspension is reacting to what are in effect "brain" signals. As electronics have become more sophisticated, the opportunities in this area have expanded. For example, a hydropneumatic Citroën will "know" how far off the ground the car is supposed to be and constantly reset to achieve that level, regardless of load. It will not instantly compensate for body roll due to cornering however. Citroën's system adds about 1% to the cost of the car versus passive steel springs. Semi-active suspensions include devices such as air springs and switchable shock absorbers, various self-levelling solutions, as well as systems like hydropneumatic, hydrolastic, and hydragas suspensions. Mitsubishi developed the world’s first production semi-active electronically controlled suspension system in passenger cars; the system was first incorporated in the 1987 Galant model. Delphi currently sells shock absorbers filled with a magneto-rheological fluid, whose viscosity can be changed electromagnetically, thereby giving variable control without switching valves, which is faster and thus more effective. Fully active suspension systems use electronic monitoring of vehicle conditions, coupled with the means to impact vehicle suspension and behavior in real time to directly control the motion of the car. Lotus Cars developed several prototypes, from 1982 onwards, and introduced them to F1, where they have been fairly effective, but have now been banned. Nissan introduced a low bandwidth active suspension in circa 1990 as an option that added an extra 20% to the price of luxury models. Citroën has also developed several active suspension models (see hydractive). A recently publicised fully active system from Bose Corporation uses linear electric motors (i.e., solenoids) in place of hydraulic or pneumatic actuators that have generally been used up until recently. The most advanced suspension system][ is Active Body Control, introduced in 1999 on the top-of-the-line Mercedes-Benz CL-Class. Several electromagnetic suspensions have also been developed for vehicles. Examples include the electromagnetic suspension of Bose, and the electromagnetic suspension developed by prof. Laurentiu Encica. In addition, the new Michelin wheel with embedded suspension working on an electromotor is also similar. With the help of control system, various semi-active/active suspensions realize an improved design compromise among different vibrations modes of the vehicle, namely bounce, roll, pitch and warp modes. However, the applications of these advanced suspensions are constrained by the cost, packaging, weight, reliability, and/or the other challenges. Interconnected suspension, unlike semi-active/active suspensions, could easily decouple different vehicle vibration modes in a passive manner. The interconnections can be realized by various means, such as mechanical, hydraulic and pneumatic. Anti-roll bars are one of the typical examples of mechanical interconnections, while it has been stated that fluidic interconnections offer greater potential and flexibility in improving both the stiffness and damping properties. Considering the considerable commercial potentials of hydro-pneumatic technology (Corolla, 1996), interconnected hydropneumatic suspensions have also been explored in some recent studies, and their potential benefits in enhancing vehicle ride and handling have been demonstrated. The control system can also be used for further improving performance of interconnected suspensions. Apart from academic research, an Australian company, Kinetic, is having some success (WRC: 3 Championships, Dakar Rally: 2 Championships, Lexus GX470 2004 4x4 of the year with KDSS, 2005 PACE award) with various passive or semi-active systems, which generally decouple at least two vehicle modes (roll, warp (articulation), pitch and/or heave (bounce)) to simultaneously control each mode’s stiffness and damping, by using interconnected shock absorbers, and other methods. In 1999, Kinetic was bought out by Tenneco. Later developments by a Catalan company, Creuat has devised a simpler system design based on single-acting cylinders. After some projects on competition Creuat is active in providing retrofit systems for some vehicle models. Historically, the first mass production car with front to rear mechanical interconnected suspension was the 1948 Citroën 2CV. The suspension of the 2CV was extremely soft — the longitudinal link was making pitch softer instead of making roll stiffer. It relied on extreme antidive and antisquat geometries to compensate for that. This redunded into a softer axle crossing stiffness that anti-roll bars would have otherwise compromised. The leading arm / trailing arm swinging arm, fore-aft linked suspension system together with inboard front brakes had a much smaller unsprung weight than existing coil spring or leaf designs. The interconnection transmitted some of the force deflecting a front wheel up over a bump, to push the rear wheel down on the same side. When the rear wheel met that bump a moment later, it did the same in reverse, keeping the car level front to rear. The 2CV had a design brief to be able to be driven at speed over a ploughed field. It originally featured friction dampers and tuned mass dampers. Later models had tuned mass dampers at the front with telescopic dampers / shock absorbers front and rear. The British Motor Corporation was also an early adopter of interconnected suspension. A system dubbed Hydrolastic was introduced in 1962 on the Morris 1100 and went on to be used on a variety of BMC models. Hydrolastic was developed by suspension engineer Alex Moulton and used rubber cones as the springing medium (these were first used on the 1959 Mini) with the suspension units on each side connected to each other by a fluid filled pipe. The fluid transmitted the force of road bumps from one wheel to the other (on the same principle as the Citroen 2CV's mechanical system described above) and because each suspension unit contained valves to restrict the flow of fluid also served as a shock absorber. Moulton went on to develop a replacement for Hydrolastic for BMC's successor, British Leyland. This system, called Hydragas worked on the same principle but instead of rubber spring units it used metal spheres divided internally by a rubber diaphragm. The top half contained pressurised gas and the lower half the same fluid as used on the Hydrolastic system. The fluid transmitted suspension forces between the units on each side whilst the gas acted as the springing medium via the diaphragm. This is the same principle as the Citroen hydropneumatic system and provides a similar ride quality but is self-contained and doesn't require an engine-driven pump to provide hydraulic pressure. The downside is that Hydragas is, unlike the Citroen system, not height adjustable or self-levelling. Hydragas was introduced in 1973 on the Austin Allegro and was used on several models, the last car to use it being the MG F in 2002. Some of the last post-war Packard models also featured interconnected suspension. Suspension systems can be broadly classified into two subgroups: dependent and independent. These terms refer to the ability of opposite wheels to move independently of each other. A dependent suspension normally has a beam (a simple 'cart' axle) or (driven) live axle that holds wheels parallel to each other and perpendicular to the axle. When the camber of one wheel changes, the camber of the opposite wheel changes in the same way (by convention on one side this is a positive change in camber and on the other side this a negative change). De Dion suspensions are also in this category as they rigidly connect the wheels together. An independent suspension allows wheels to rise and fall on their own without affecting the opposite wheel. Suspensions with other devices, such as sway bars that link the wheels in some way are still classed as independent. A third type is a semi-dependent suspension. In this case, the motion of one wheel does affect the position of the other but they are not rigidly attached to each other. A twist-beam rear suspension is such a system. Dependent systems may be differentiated by the system of linkages used to locate them, both longitudinally and transversely. Often both functions are combined in a set of linkages. Examples of location linkages include: In a front engine, rear-drive vehicle, dependent rear suspension is either "live axle" or deDion axle, depending on whether or not the differential is carried on the axle. Live axle is simpler but the unsprung weight contributes to wheel bounce. Because it assures constant camber, dependent (and semi-independent) suspension is most common on vehicles that need to carry large loads as a proportion of the vehicle weight, that have relatively soft springs and that do not (for cost and simplicity reasons) use active suspensions. The use of dependent front suspension has become limited to heavier commercial vehicles. In a semi-independent suspensions, the wheels of an axle are able to move relative to one another as in an independent suspension but the position of one wheel has an effect on the position and attitude of the other wheel. This effect is achieved via the twisting or deflecting of suspension parts under load. The most common type of semi-independent suspension is the twist beam. The variety of independent systems is greater and includes: Because the wheels are not constrained to remain perpendicular to a flat road surface in turning, braking and varying load conditions, control of the wheel camber is an important issue. Swinging arm was common in small cars that were sprung softly and could carry large loads, because the camber is independent of load. Some active and semi-active suspensions maintain the ride height, and therefore the camber, independent of load. In sports cars, optimal camber change when turning is more important. Wishbone and multi-link allow the engineer more control over the geometry, to arrive at the best compromise, than swing axle, MacPherson strut or swinging arm do; however the cost and space requirements may be greater. Semi-trailing arm is in between, being a variable compromise between the geometries of swinging arm and swing axle. Some vehicles such as trains run on long rail tracks fixed to the ground, and some such as tractors, snow vehicles and tanks run on continuous tracks that are part of the vehicle. Though either sort helps to smooth the path and reduce ground pressure, many of the same consideration apply. Military AFVs, including tanks, have specialized suspension requirements. They can weigh more than seventy tons and are required to move as quickly as possible over very rough or soft ground. Their suspension components must be protected from land mines and antitank weapons. Tracked AFVs can have as many as nine road wheels on each side. Many wheeled AFVs have six or eight large wheels. Some have a Central Tire Inflation System to reduce ground loading on poor surfaces. Some wheels are too big and confined to turn, so skid steering is used with some wheeled, as well as with tracked, vehicles. The earliest tanks of World War I had fixed suspension with no designed movement whatsoever. This unsatisfactory situation was improved with leaf spring or coil spring suspensions adopted from agricultural, automotive or railway machinery, but even these had very limited travel. Speeds increased due to more powerful engines, and the quality of ride had to be improved. In the 1930s, the Christie suspension was developed, which allowed the use of coil springs inside a vehicle's armored hull, by changing the direction of force deforming the spring, using a bell crank. The war winning T-34 was directly descended from Christie designs. Horstmann suspension was a variation which used a combination of bell crank and exterior coil springs, in use from the 1930s to the 1990s. The bogie, but nonetheless independent, suspension of the M3 Lee/Grant and the M4 Sherman was similar to the Hortsmann type, with the suspension contained within the track oval. By World War II the other common type was torsion bar suspension, getting spring force from twisting bars inside the hull — this sometimes had less travel than the Christie-type, but was significantly more compact, allowing more space inside the hull, with consequent possibility to install larger turret rings and thus a heavier main armament. The torsion-bar suspension, sometimes including shock absorbers, has been the dominant heavy armored vehicle suspension since World War II. Torsion bars may take space under or near the floor, which may interfere with making the tank low to reduce exposure. As with cars, wheel travel and spring rate affect the bumpiness of the ride and the speed at which rough terrain can be negotiated. It may be significant that a smooth ride, which is often associated with comfort, increases the accuracy when firing on the move (analogously to battle ships with reduced stability, due to reduced metacentric height). It also reduces shock on optics and other equipment. The unsprung weight and track link weight may limit speed on roads and affect the life of the track and other components. Most German WW II half tracks and their tanks introduced during the war such as the Panther tank had overlapping and sometimes interleaved road wheels to distribute the load more evenly on the track and therefore on the ground. This apparently made a significant contribution to speed, range and track life, as well as providing a continuous band of protection. It has not been used since the end of that war, probably due to the maintenance requirements of more complicated mechanical parts working in mud, sand, rocks, snow and ice, as well as to cost. Rocks and frozen mud stuck between the wheels.

Control arm
In automotive suspension, an automobile's control arm or wishbone (aka. A-arm or A-frame) is a nearly flat and roughly triangular suspension member (or sub-frame), that pivots in two places. The base of the triangle attaches at the frame and pivots on a bushing. The narrow end attaches to the steering knuckle and pivots on a ball joint. The upper control arm can clearly be seen at the top portion of the suspension components in the attached photo, where it is the silver part horizontally attached to the frame inside the red body portion and connecting to the steering knuckle near the side of the tire's wheel rim. Note the roughly A-shaped design with the top of the A near the tire and the bottom two points connected to the frame inside the body's space. In the photo, the A-shape is reinforced with a solid triangular plate near the top of the A. Two such devices per wheel make up a double wishbone suspension, while one control arm per wheel makes up a part, usually the lower part, of a MacPherson strut suspension or of various other configurations.

Live axle
A live axle, sometimes called a solid axle, is a type of beam axle suspension system that uses the drive shafts that transmit power to the wheels to connect the wheels laterally so that they move together as a unit. A live axle consists of a central differential in a single housing that also contains the driveshafts that connect the differential to the driven wheels. The differential is connected to the engine via a swinging drive shaft and a universal joint. The complete assembly may typically be suspended with leaf springs, coil springs or air bags. In small trucks solid front axles have generally been replaced by independent front suspension. Some live axles use trailing arms, semi-trailing arms, Panhard rod, or Watt's linkage to control the vertical and lateral movements of the axle. Others, particularly older vehicles, use Hotchkiss drive, in which the leaf springs provide axle location as well as suspension.

Trailing arm
A trailing-arm suspension, sometimes referred as trailing-link is an automobile suspension design in which one or more arms (or "links") are connected between (and perpendicular to and forward of) the axle and the chassis. It is usually used on rear axles. A "leading arm", as used on a Citroën 2CV, has an arm connected between (and perpendicular to, and to the rear of) the axle and the chassis. It is used on the front axle. Trailing-arm designs in live axle setups often use just two or three links and a Panhard rod to locate the wheel laterally. A trailing arm design can also be used in an independent suspension arrangement. Each wheel hub is located only by a large, roughly triangular arm that pivots at one point, ahead of the wheel. Seen from the side, this arm is roughly parallel to the ground, with the angle changing based on road irregularities. A twist-beam rear suspension is very similar except that the arms are connected by a beam, used to locate the wheels and which twists and has an anti-roll effect. A semi-trailing arm suspension is a supple independent rear suspension system for automobiles where each wheel hub is located only by a large, roughly triangular arm that pivots at two points. Viewed from the top, the line formed by the two pivots is somewhere between parallel and perpendicular to the car's longitudinal axis; it is generally parallel to the ground. Trailing-arm and multilink suspension designs are much more commonly used for the rear wheels of a vehicle where they can allow for a flatter floor and more cargo room. Many small, front-wheel drive vehicles feature a MacPherson strut front suspension and trailing-arm rear axle.
Transport Land transport
Body modification

Body modification (or body alteration, called body mutilation by detractors) is the deliberate altering of the human anatomy or phenotype. It is often done for aesthetics, sexual enhancement, rites of passage, religious beliefs, to display group membership or affiliation, to create body art, for shock value, and as self-expression, among other reasons. In its most broad definition it includes plastic surgery, socially acceptable decoration (e.g., common ear piercing in many societies), and religious rites of passage (e.g., circumcision in a number of cultures), as well as the modern primitive movement.

In contrast to the explicit ornaments, the following procedures are primarily not meant to be exposed per se, but rather function to augment another part of the body, like the skin in a subdermal implant.

Mechanical engineering

Mechanical engineering is a discipline of engineering that applies the principles of engineering, physics and materials science for analysis, design, manufacturing, and maintenance of mechanical systems. It is the branch of engineering that involves the production and usage of heat and mechanical power for the design, production, and operation of machines and tools. It is one of the oldest and broadest engineering disciplines.

The engineering field requires an understanding of core concepts including mechanics, kinematics, thermodynamics, materials science, structural analysis, and electricity. Mechanical engineers use these core principles along with tools like computer-aided engineering, and product lifecycle management to design and analyze manufacturing plants, industrial equipment and machinery, heating and cooling systems, transport systems, aircraft, watercraft, robotics, medical devices, weapons, and others.


Related Websites:

Terms of service | About