Question:

What is the atomic mass of the isotope oxygen 18?

Answer:

Isotope Oxygen-18 mass is 0.200%. The atomic mass of an element is defined as the average of the isotopic masses.

More Info:


Atomic mass

The atomic mass (ma) is the mass of an atomic particle, sub-atomic particle, or molecule. It may be expressed in unified atomic mass units; by international agreement, 1 atomic mass unit is defined as 1/12 of the mass of a single carbon-12 atom (at rest). When expressed in such units, the atomic mass is called the relative isotopic mass (see section below).

The atomic mass or relative isotopic mass refers to the mass of a single particle, and is fundamentally different from the quantities elemental atomic weight (also called "relative atomic mass") and standard atomic weight, both of which refer to averages (mathematical means) of naturally-occurring atomic mass values for samples of elements. Such averages are expected to have a variance according to the sample source for the collection of nuclides that make up a sample of a chemical element (each of which has its own exact characteristic atomic mass). Such mixtures reflect various abundance ratios of isotopes of the element as the ratios naturally occur in the place where the element sample was collected. By contrast, atomic mass figures refer to identical particle species; due to the exactly identical nature of species of atomic particles, atomic mass values are expected to have no intrinsic variance at all. Atomic mass figures are thus commonly reported to many more significant figures than atomic weights.

Isotope
Chemical element

A chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, which is the number of protons in its nucleus. Elements are divided into metals, metalloids, and non-metals. Familiar examples of elements include carbon, oxygen (non-metals), silicon, arsenic (metalloids), aluminium, iron, copper, gold, mercury, and lead (metals).

The lightest chemical elements, including hydrogen, helium (and smaller amounts of lithium, beryllium and boron), are thought to have been produced by various cosmic processes during the Big Bang and cosmic-ray spallation. Production of heavier elements, from carbon to the very heaviest elements, proceeded by stellar nucleosynthesis, and these were made available for later solar system and planetary formation by planetary nebulae and supernovae, which blast these elements into space. The high abundance of oxygen, silicon, and iron on Earth reflects their common production in such stars, after the lighter gaseous elements and their compounds have been subtracted. While most elements are generally viewed as stable, a small amount of natural transformation of one element to another also occurs at the present time through decay of radioactive elements as well as other natural nuclear processes.

The monoisotopic mass is the sum of the masses of the atoms in a molecule using the unbound, ground-state, rest mass of the principal (most abundant) isotope for each element instead of the isotopic average mass. For typical organic compounds, where the monoisotopic mass is most commonly used, this also results in the lightest isotope being selected. For some heavier atoms such as iron and argon the principle isotope is not the lightest isotope. The term is designed for measurements in mass spectrometry primarily with smaller molecules. It is not typically useful as a concept in physics or general chemistry. Monoisotopic mass is typically expressed in unified atomic mass units (u), also called daltons (Da).

The mass spectral peak representing the monoisotopic mass is not always the most abundant isotopic peak in a spectrum despite it containing the most abundant isotope for each atom. This is because as the number of atoms in a molecule increases, the probability that the entire molecule contains at least one heavy isotope atom also increases. For example if there are 100 carbon atoms in a molecule each of which has an approximately 1% chance of being a heavy isotope the whole molecule is highly likely to contain at least one heavy isotope atom and the most abundant isotopic composition will no longer be the same as the monoisotopic peak.


Molecular mass

Molecular mass or molecular weight refers to the mass of a molecule. It is calculated as the sum of the mass of each constituent atom multiplied by the number of atoms of that element in the molecular formula. The molecular mass of small to medium size molecules, measured by mass spectrometry, determines stoichiometry. For large molecules such as proteins, methods based on viscosity and light-scattering can be used to determine molecular mass when crystallographic data are not available.

Both atomic and molecular masses are usually obtained relative to the mass of the isotope 12C (carbon 12) which by definition is equal to 12. For example, the molecular weight of methane, molecular formula CH4, is calculated as follows.

Business Finance Chemistry
Chemical properties

A chemical property is any of a material's properties that becomes evident during a chemical reaction; that is, any quality that can be established only by changing a substance's chemical identity. Simply speaking, chemical properties cannot be determined just by viewing or touching the substance; the substance's internal structure must be affected for its chemical properties to be investigated. However a catalytic property would also be a chemical property.

Chemical properties can be contrasted with physical properties, which can be discerned without changing the substance's structure. However, for many properties within the scope of physical chemistry, and other disciplines at the boundary between chemistry and physics, the distinction may be a matter of researcher's perspective. Material properties, both physical and chemical, can be viewed as supervenient; i.e., secondary to the underlying reality. Several layers of superveniency]clarification needed[ are possible.

Mass Religion Belief Religion Belief Business Finance
News:


Related Websites:


Terms of service | About
31