Question:

What does excited state mean in electron configurations?

Answer:

When an electron temporarily occupies an energy state greater than its ground state, it is in an excited state.

More Info:

energy
Atomic physics

Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. It is primarily concerned with the arrangement of electrons around the nucleus and the processes by which these arrangements change. This includes ions as well as neutral atoms and, unless otherwise stated, for the purposes of this discussion it should be assumed that the term atom includes ions.

The term atomic physics is often associated with nuclear power and nuclear bombs, due to the synonymous use of atomic and nuclear in standard English. However, physicists distinguish between atomic physics — which deals with the atom as a system consisting of a nucleus and electrons — and nuclear physics, which considers atomic nuclei alone.


Quantum chemistry

Quantum chemistry is a branch of chemistry whose primary focus is the application of quantum mechanics in physical models and experiments of chemical systems. It involves heavy interplay of experimental and theoretical methods:

In these ways, quantum chemists investigate chemical phenomena.


Molecular physics

Molecular physics is the study of the physical properties of molecules, the chemical bonds between atoms as well as the molecular dynamics. Its most important experimental techniques are the various types of spectroscopy; scattering is also used. The field is closely related to atomic physics and overlaps greatly with theoretical chemistry, physical chemistry and chemical physics.

Additionally to the electronic excitation states which are known from atoms, molecules are able to rotate and to vibrate. These rotations and vibrations are quantized, there are discrete energy levels. The smallest energy differences exist between different rotational states, therefore pure rotational spectra are in the far infrared region (about 30 - 150 µm wavelength) of the electromagnetic spectrum. Vibrational spectra are in the near infrared (about 1 - 5 µm) and spectra resulting from electronic transitions are mostly in the visible and ultraviolet regions. From measuring rotational and vibrational spectra properties of molecules like the distance between the nuclei can be calculated.


Theoretical chemistry

Theoretical chemistry seeks to provide explanations to chemical and physical observations. Should the properties derived from the quantum theory give a good account of the above mentioned phenomena, we derive consequences using the same theory. Should the derived consequences fall too far from the experimental evidence, we go to a different theory. G. Lewis proposed that chemical properties originated from the electrons of the atom's valence shell, ever since the theoretical chemistry has dealt with modelling of the outer electrons of interacting atoms or molecules in a reaction. Theoretical chemistry includes the fundamental laws of physics Coulomb's law, Kinetic energy, Potential energy, the Virial Theorem, Planck's Law, Pauli exclusion principle and many others to explain but also predict chemical observed phenomena. The term quantum chemistry which comes from Bohr's quantized model of electron in the atom, applies to both the time independent Schrödinger and the time dependent Dirac formulations.

In general one has to distinguish, theoretical approach (theory level such as Hartree-Fock (HF), Coupled cluster, Relativistic, etc.) from mathematical formalism, plane wave, spherical harmonics, Bloch wave periodic potential. Methods that solve iteratively the energies (Eigenvalues) of stationary state waves in a potential include Restricted Hartree-Fock (RHF), Multi-configurational self-consistent field (CASSCF or MCSCF) but the theory pertains to Schroedinger. Related areas in theoretical chemistry include the mathematical characterization of bulk materials (e.g. the study of electronic band structure in solid state physics) using the theory of Electronic band structure in a Periodic Crystal Lattice. Different theoretical approaches are Molecular mechanics and Topology. The study of the applicability of well established mathematical theories to chemistry is crucial to metals (i.e. topology in the study of small bodies explains the elaborate electronic structures of clusters). This later area of theoretical chemistry originates from the so-called mathematical chemistry. Time Dependent Quantum Molecular Dynamics, is a modern approach to the interaction of light with molecules that vibrate and drive reactions in a desired direction.


Ground state

The ground state of a quantum mechanical system is its lowest-energy state; the energy of the ground state is known as the zero-point energy of the system. An is any state with energy greater than the ground state. The ground state of a quantum field theory is usually called the vacuum state or the vacuum.

If more than one ground state exists, they are said to be degenerate. Many systems have degenerate ground states. Degeneracy occurs whenever there exists a unitary operator which acts non-trivially on a ground state and commutes with the Hamiltonian of the system.

Electron
Excited state

Excitation is an elevation in energy level above an arbitrary baseline energy state. In physics there is a specific technical definition for energy level which is often associated with an atom being excited to an excited state.

In quantum mechanics an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). The temperature of a group of particles is indicative of the level of excitation (with the notable exception of systems that exhibit Negative temperature).


Energy level

A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy. This contrasts with classical particles, which can have any energy. These discrete values are called energy levels. The term is commonly used for the energy levels of electrons in atoms or molecules, which are bound by the electric field of the nucleus, but can also refer to energy levels of nuclei or vibrational or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be quantized.

If the potential energy is set to zero at infinite distance from the atomic nucleus or molecule, the usual convention, then bound electron states have negative potential energy.


Rydberg atom

A Rydberg atom is an with one or more electrons that have a very high principal quantum number. These atoms have a number of peculiar properties including an exaggerated response to electric and magnetic fields, long decay periods and electron wavefunctions that approximate, under some conditions, classical orbits of electrons about the nuclei. The core electrons shield the outer electron from the electric field of the nucleus such that, from a distance, the electric potential looks identical to that experienced by the electron in a hydrogen atom.

In spite of its shortcomings, the Bohr model of the atom is useful in explaining these properties. Classically an electron in a circular orbit of radius r, about a hydrogen nucleus of charge +e, obeys Newton's second law:

Chemistry Physics
Quantum mechanics

Quantum mechanics (QM – also known as quantum physics, or quantum theory) is a branch of physics which deals with physical phenomena at microscopic scales, where the action is on the order of the Planck constant. It departs from classical mechanics primarily at the quantum realm of atomic and subatomic length scales. Quantum mechanics provides a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. It is the non-relativistic limit of Quantum Field Theory (QFT), a theory that was developed later that combined Quantum Mechanics with Relativity.

In advanced topics of quantum mechanics, some of these behaviors are macroscopic (see macroscopic quantum phenomena) and emerge at only extreme (i.e., very low or very high) energies or temperatures (such as in the use of superconducting magnets). The name quantum mechanics derives from the observation that some physical quantities can change only in discrete amounts (Latin quanta), and not in a continuous (cf. analog) way. For example, the angular momentum of an electron bound to an atom or molecule is quantized. In the context of quantum mechanics, the wave–particle duality of energy and matter and the uncertainty principle provide a unified view of the behavior of photons, electrons, and other atomic-scale objects.

Technology Internet Environment Technology Internet
News:


Related Websites:


Terms of service | About
27