Question:

Was variation among pre cells due to genetic drift, artificial selection, natural selction, mutation, or the bottleneck effect?

Answer:

Mutation, Migration, and Genetic Drift cause differences in organisms and the changes that enhance survival become prevalent.

More Info:

Genetic drift or allelic drift is the change in the frequency of a gene variant (allele) in a population due to random sampling. The alleles in the offspring are a sample of those in the parents, and chance has a role in determining whether a given individual survives and reproduces. A population's allele frequency is the fraction of the copies of one gene that share a particular form. Genetic drift may cause gene variants to disappear completely and thereby reduce genetic variation.

When there are few copies of an allele, the effect of genetic drift is larger, and when there are many copies the effect is smaller. Vigorous debates occurred over the relative importance of natural selection versus neutral processes, including genetic drift. Ronald Fisher held the view that genetic drift plays at the most a minor role in evolution, and this remained the dominant view for several decades. In 1968, Motoo Kimura rekindled the debate with his neutral theory of molecular evolution, which claims that most instances where a genetic change spreads across a population (although not necessarily changes in phenotypes) are caused by genetic drift.

Evolutionary biology is a sub-field of biology concerned with the study of the evolutionary processes that produced the diversity of life on Earth. Someone who studies evolutionary biology is known as an evolutionary biologist. Evolutionary biologists study the descent of species, and the origin of new species.

Biology

Population genetics is the study of allele frequency distribution and change under the influence of the four main evolutionary processes: natural selection, genetic drift, mutation and gene flow. It also takes into account the factors of recombination, population subdivision and population structure. It attempts to explain such phenomena as adaptation and speciation.

Population genetics was a vital ingredient in the emergence of the modern evolutionary synthesis. Its primary founders were Sewall Wright, J. B. S. Haldane and R. A. Fisher, who also laid the foundations for the related discipline of quantitative genetics.

The philosophy of biology is a subfield of philosophy of science, which deals with epistemological, metaphysical, and ethical issues in the biological and biomedical sciences. Although philosophers of science and philosophers generally have long been interested in biology (e.g., Aristotle, Descartes, and even Kant), philosophy of biology only emerged as an independent field of philosophy in the 1960s and 1970s. Philosophers of science then began paying increasing attention to biology, from the rise of Neodarwinism in the 1930s and 1940s to the discovery of the structure of DNA in 1953 to more recent advances in genetic engineering. Other key ideas include the reduction of all life processes to biochemical reactions, and the incorporation of psychology into a broader neuroscience.

Genetics

Genetic genealogy is the application of genetics to traditional genealogy. Genetic genealogy involves the use of genealogical DNA testing to determine the level and type of the genetic relationship between individuals. This application of genetics became popular with family historians in the first decade of the 21st century, as tests became affordable. The tests have been promoted by amateur groups, such as surname study groups, or regional genealogical groups, as well as research projects such as the genographic project. As of 2013 hundreds of thousands of people had been tested. As this field has developed, the aims of practitioners broadened, with many seeking knowledge of their ancestry beyond the recent centuries for which traditional pedigrees can be constructed.

The investigation of surnames in genetics can be said to go back to George Darwin, a son of Charles Darwin. In 1875, George Darwin used surnames to estimate the frequency of first-cousin marriages and calculated the expected incidence of marriage between people of the same surname (isonymy). He arrived at a figure between 2.25% and 4.5% for cousin-marriage in the population of Great Britain, higher among the upper classes and lower among the general rural population.

Mutation

Evolution is the process of change in all forms of life over generations, and evolutionary biology is the study of how evolution occurs. Life evolves by means of mutations (changes in an organism's hereditary information), genetic drift (random change in the genetic variation of a population from generation to generation), and natural selection (the non-random and gradual process of natural variation by which observable traits (such as eye color) become more or less common in a population).

All individuals have hereditary material in the form of genes that are received from their parents, then passed on to their offspring. Among offspring there are variations of genes due to the introduction of new genes via random changes called mutations or via reshuffling of existing genes during sexual reproduction. The offspring differs from the parent in minor random ways. If those differences are helpful, the offspring is more likely to survive and reproduce. This means that more offspring in the next generation will have that helpful difference and individuals will not have equal chances of reproductive success. In this way, traits that result in organisms being better adapted to their living conditions become more common in descendant populations. These differences accumulate resulting in changes within the population. This process is responsible for the many diverse life forms in the world.

Health Medical Pharma
News:


Related Websites:


Terms of service | About
11