Is there gravitational pull in the earths atmosphere?


There is gravitational pull in the earth's atmosphere because of the actual weight of the earth's atmosphere. Atmospheric (MORE?)

More Info:

Atmosphere Meteorology
Atmospheric sciences

Atmospheric physics
Atmospheric dynamics (category)

Weather (category) · (portal)

Planetary atmospheres

An atmosphere (New Latin atmosphaera, created in the 17th century from Greek ἀτμός [atmos] "vapor" and σφαῖρα [sphaira] "sphere") is a layer of gases surrounding a material body of sufficient mass that is held in place by the gravity of the body. An atmosphere is more likely to be retained if the gravity is high and the atmosphere's temperature is low.

Earth's atmosphere, which contains oxygen used by most organisms for respiration and carbon dioxide used by plants, algae and cyanobacteria for photosynthesis, also protects living organisms from genetic damage by solar ultraviolet radiation. Its current composition is the product of billions of years of biochemical modification of the paleoatmosphere by living organisms.

Atmospheric thermodynamics is the study of heat to work transformations (and the reverse) in the earth’s atmospheric system in relation to weather or climate. Following the fundamental laws of classical thermodynamics, atmospheric thermodynamics studies such phenomena as properties of moist air, formation of clouds, atmospheric convection, boundary layer meteorology, and vertical stabilities in the atmosphere. Atmospheric thermodynamic diagrams are used as tools in the forecasting of storm development. Atmospheric thermodynamics forms a basis for cloud microphysics and convection parameterizations in numerical weather models, and is used in many climate considerations, including convective-equilibrium climate models.

Planetary science

Planetary science (rarely planetology) is the scientific study of planets (including Earth), moons, and planetary systems, in particular those of the Solar System and the processes that form them. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, originally growing from astronomy and earth science, but which now incorporates many disciplines, including planetary astronomy, planetary geology (together with geochemistry and geophysics), atmospheric science, oceanography, hydrology, theoretical planetary science, glaciology, and the study of extrasolar planets. Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

There are interrelated observational and theoretical branches of planetary science. Observational research can involve a combination of space exploration, predominantly with robotic spacecraft missions using remote sensing, and comparative, experimental work in Earth-based laboratories. The theoretical component involves considerable computer simulation and mathematical modelling.

Escape velocity

In physics, escape velocity is the speed at which the kinetic energy plus the gravitational potential energy of an object is zero. It is the speed needed to "break free" from the gravitational attraction of a massive body, without further propulsion.

For a spherically symmetric body, the escape velocity at a given distance is calculated by the formula

Atmospheric tides are global-scale periodic oscillations of the atmosphere. In many ways they are analogous to ocean tides. Atmospheric tides can be excited by:

The largest-amplitude atmospheric tides are mostly generated in the troposphere and stratosphere when the atmosphere is periodically heated, as water vapour and ozone absorb solar radiation during the day. These tides propagate away from the source regions and ascend into the mesosphere and thermosphere. Atmospheric tides can be measured as regular fluctuations in wind, temperature, density and pressure. Although atmospheric tides share much in common with ocean tides they have two key distinguishing features:


Science of drugs including their origin, composition, pharmacokinetics,
pharmacodynamics, therapeutic use, and toxicology.

Pharmacology (from Greek φάρμακον, pharmakon, "poison" in classic Greek; "drug" in modern Greek; and -λογία, -logia "study of", "knowledge of") is the branch of medicine and biology concerned with the study of drug action, where a drug can be broadly defined as any man-made, natural, or endogenous (within the body) molecule which exerts a biochemical and/or physiological effect on the cell, tissue, organ, or organism. More specifically, it is the study of the interactions that occur between a living organism and chemicals that affect normal or abnormal biochemical function. If substances have medicinal properties, they are considered pharmaceuticals.


Related Websites:

Terms of service | About