Question:

Is amoxicillin a treatment for cold sores?

Answer:

Amoxicillin is a penicillin-type antibiotic used to treat a wide variety of bacterial infections. It works by stopping the growth of bacteria. This antibiotic treats only bacterial infections. It will not work for viral infections

More Info:

Herpes labialis, (also called cold sores, herpes simplex labialis, recurrent herpes labialis, or orolabial herpes),:368 is a type of herpes simplex occurring on the lip, i.e. an infection caused by herpes simplex virus (HSV). An outbreak typically causes small blisters or sores on or around the mouth commonly known as cold sores or fever blisters. The sores typically heal within 2–3 weeks, but the herpes virus remains dormant in the facial nerves, following orofacial infection, periodically reactivating (in symptomatic people) to create sores in the same area of the mouth or face at the site of the original infection.

Cold sore has a rate of frequency that varies from rare episodes to 12 or more recurrences per year. People with the condition typically experience one to three attacks annually. The frequency and severity of outbreaks generally decreases over time.

Amoxicillin bacteria Medicine

β-Lactam antibiotics (beta-lactam antibiotics) are a broad class of antibiotics, consisting of als that contains a β-lactam ring in their molecular structures. This includes penicillin derivatives (penams), cephalosporins (cephems), monobactams, and carbapenems. Most β-lactam antibiotics work by inhibiting cell wall biosynthesis in the bacterial organism and are the most widely used group of antibiotics. Up until 2003, when measured by sales, more than half of all commercially available antibiotics in use were β-lactam compounds.

Bacteria often develop resistance to β-lactam antibiotics by synthesizing a β-lactamase, an enzyme that attacks the β-lactam ring. To overcome this resistance, β-lactam antibiotics are often given with β-lactamase inhibitors such as clavulanic acid.

Biology Health Microbiology GlaxoSmithKline

An enantiopure drug is a pharmaceutical that is available in one specific enantiomeric form. Most biological molecules (proteins, sugars, etc.) are present in only one of many chiral forms, so different enantiomers of a chiral drug molecule bind differently (or not at all) to target receptors. One enantiomer of a drug may have a desired beneficial effect while the other may cause serious and undesired side effects, or sometimes even beneficial but entirely different effects. Advances in industrial chemical processes have made it economical for pharmaceutical manufacturers to take drugs that were originally marketed as a racemic mixture and market the individual enantiomers, either by specifically manufacturing the desired enantiomer or by resolving a racemic mixture. On a case-by-case basis, the U.S. Food and Drug Administration (FDA) has allowed single enantiomers of certain drugs to be marketed under a different name than the racemic mixture. Also case-by-case, the United States Patent Office has granted patents for single enantiomers of certain drugs. The regulatory review for marketing approval (safety and efficacy) and for patenting (proprietary rights) is independent, and differs country by country.

The following table lists pharmaceuticals that have been available in both racemic and single-enantiomer form.

Antibiotics Infection Antibacterial Health Medical Pharma penicillin

These are tables of the clinically most important viruses. A vast number of viruses cause infectious diseases, but these are the major ones]citation needed[.

only bacterial infections

Pathogenic bacteria are bacteria that cause bacterial infection. This article deals with human pathogenic bacteria.

Although the vast majority of bacteria are harmless or beneficial, quite a few bacteria are pathogenic. One of the bacterial diseases with highest disease burden is tuberculosis, caused by the bacterium Mycobacterium tuberculosis, which kills about 2 million people a year, mostly in sub-Saharan Africa. Pathogenic bacteria contribute to other globally important diseases, such as pneumonia, which can be caused by bacteria such as Streptococcus and Pseudomonas, and foodborne illnesses, which can be caused by bacteria such as Shigella, Campylobacter, and Salmonella. Pathogenic bacteria also cause infections such as tetanus, typhoid fever, diphtheria, syphilis, and leprosy.

News:


Related Websites:


Terms of service | About
6