Question:

If an atom of an element has a mass number of 31 and 16 neutrons in its nucleus, what is the atomic number of the element?

Answer:

Number of Neutrons = Mass Number - Atomic Number, so 16=31-x, therefore the atomic number is 15.

More Info:

The mass number (A), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. Because protons and neutrons both are baryons, the mass number A is identical with the baryon number B as of the nucleus as of the whole atom or ion. The mass number is different for each different isotope of a chemical element. This is not the same as the atomic number (Z) which denotes the number of protons in a nucleus, and thus uniquely identifies an element. Hence, the difference between the mass number and the atomic number gives the number of neutrons (N) in a given nucleus: N=A−Z.

The neutron is a subatomic hadron particle which has the symbol or , no net electric charge and a mass slightly larger than that of a proton. With the exception of hydrogen-1, nuclei of atoms consist of protons and neutrons, which are therefore collectively referred to as nucleons. The number of protons in a nucleus is the atomic number and defines the type of element the atom forms. Neutrons are necessary within an atomic nucleus as they bind with protons via the nuclear force; protons are unable to bind with each other (see diproton) because their mutual electromagnetic repulsion is stronger than the attraction of the nuclear force. The number of neutrons is the neutron number and determines the isotope of an element. For example, the abundant carbon-12 isotope has 6 protons and 6 neutrons, while the very rare radioactive carbon-14 isotope has 6 protons and 8 neutrons.

In chemistry and physics, the atomic number (also known as the proton number) is the number of protons found in the nucleus of an atom and therefore identical to the charge number of the nucleus. It is conventionally represented by the symbol Z. The atomic number uniquely identifies a chemical element. In an atom of neutral charge, the atomic number is also equal to the number of electrons.

In chemistry and physics, the atomic number (also known as the proton number) is the number of protons found in the nucleus of an atom and therefore identical to the charge number of the nucleus. It is conventionally represented by the symbol Z. The atomic number uniquely identifies a chemical element. In an atom of neutral charge, the atomic number is also equal to the number of electrons.

The atomic mass (ma) is the mass of an atomic particle, sub-atomic particle, or molecule. It may be expressed in unified atomic mass units, which by International agreement is 1/12 mass of a single carbon-12 atom at rest. When expressed in such units, the atomic mass is called the relative isotopic mass (see section below).

In chemistry and physics, the atomic number (also known as the proton number) is the number of protons found in the nucleus of an atom and therefore identical to the charge number of the nucleus. It is conventionally represented by the symbol Z. The atomic number uniquely identifies a chemical element. In an atom of neutral charge, the atomic number is also equal to the number of electrons.

The mass number (A), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. Because protons and neutrons both are baryons, the mass number A is identical with the baryon number B as of the nucleus as of the whole atom or ion. The mass number is different for each different isotope of a chemical element. This is not the same as the atomic number (Z) which denotes the number of protons in a nucleus, and thus uniquely identifies an element. Hence, the difference between the mass number and the atomic number gives the number of neutrons (N) in a given nucleus: N=A−Z.

Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge they can enter a nucleus more easily than positively charged protons, which are repelled electrostatically.

Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of the structure of the material. The technique is similar to X-ray diffraction but due to their different scattering properties, neutrons and X-rays provide complementary information.

The neutron is a subatomic hadron particle which has the symbol or , no net electric charge and a mass slightly larger than that of a proton. With the exception of hydrogen-1, nuclei of atoms consist of protons and neutrons, which are therefore collectively referred to as nucleons. The number of protons in a nucleus is the atomic number and defines the type of element the atom forms. Neutrons are necessary within an atomic nucleus as they bind with protons via the nuclear force; protons are unable to bind with each other (see diproton) because their mutual electromagnetic repulsion is stronger than the attraction of the nuclear force. The number of neutrons is the neutron number and determines the isotope of an element. For example, the abundant carbon-12 isotope has 6 protons and 6 neutrons, while the very rare radioactive carbon-14 isotope has 6 protons and 8 neutrons.

A chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, which is the number of protons in its nucleus. Elements are divided into metals, metalloids, and non-metals. Familiar examples of elements include carbon, oxygen (non-metals), silicon, arsenic (metalloids), aluminium, iron, copper, gold, mercury, and lead (metals).

Hydrogen is a chemical element with chemical symbol H and atomic number 1. With an atomic weight of , hydrogen is the lightest element and its monatomic form (H) is the most abundant chemical substance, constituting roughly 75% of the Universe's baryonic mass. Non-remnant stars are mainly composed of hydrogen in its plasma state.

In chemistry and physics, the atomic number (also known as the proton number) is the number of protons found in the nucleus of an atom and therefore identical to the charge number of the nucleus. It is conventionally represented by the symbol Z. The atomic number uniquely identifies a chemical element. In an atom of neutral charge, the atomic number is also equal to the number of electrons.

A chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, which is the number of protons in its nucleus. Elements are divided into metals, metalloids, and non-metals. Familiar examples of elements include carbon, oxygen (non-metals), silicon, arsenic (metalloids), aluminium, iron, copper, gold, mercury, and lead (metals).

Hydrogen is a chemical element with chemical symbol H and atomic number 1. With an atomic weight of , hydrogen is the lightest element and its monatomic form (H) is the most abundant chemical substance, constituting roughly 75% of the Universe's baryonic mass. Non-remnant stars are mainly composed of hydrogen in its plasma state.

In chemistry and physics, the atomic number (also known as the proton number) is the number of protons found in the nucleus of an atom and therefore identical to the charge number of the nucleus. It is conventionally represented by the symbol Z. The atomic number uniquely identifies a chemical element. In an atom of neutral charge, the atomic number is also equal to the number of electrons.

Chemistry Physics Nuclear chemistry Chemical properties Nuclear physics Mass Atom Technology Internet

Related Websites:


Terms of service | About
11