If An alloy is an example of what kind of solution?


An Alloy is a solid solution with mixed metals in a single homogeneous phase.

More Info:

An alloy is a mixture or metallic solid solution composed of two or more elements. An alloy will contain one or more of the three: a solid solution of the elements (a single phase); a mixture of metallic phases (two or more solutions); an intermetallic compound with no distinct boundary between the phases. Solid solution alloys give a single solid phase microstructure, while partial solutions give two or more phases that may or may not be homogeneous in distribution, depending on the thermal (heat treatment) history of the material. An intermetallic compound will have another alloy or pure metal embedded within another pure metal. Alloys are used as their properties are superior to those of the pure component elements. Examples of alloys are solder, brass, pewter, phosphor bronze and amalgam. The alloy constituents are usually measured by mass. Alloys are usually classified as substitutional or interstitial alloys, depending on the atomic arrangement that forms the alloy. They can be further classified as homogeneous (consisting of a single phase), or heterogeneous (consisting of two or more phases) or intermetallic (where there is no distinct boundary between phases). An alloy is a mixture of either pure or fairly pure chemical elements, which forms an impure substance (admixture) that retains the characteristics of a metal. An alloy is distinctive from an impure metal, such as wrought iron, in that, with an alloy, the added impurities are usually desirable and will typically have some useful benefit. Alloys are made by mixing two or more elements; at least one of which being a metal. This is usually called the primary metal or the base metal, and the name of this metal may also be the name of the alloy. The other constituents may or may not be metals but, when mixed with the molten base, they will be soluble, dissolving into the mixture. When the alloy cools and solidifies (crystallizes), its mechanical properties will often be quite different from those of its individual constituents. A metal that is normally very soft and malleable, such as aluminum, can be altered by alloying it with another soft metal, like copper. Although both metals are very soft and ductile, the resulting aluminum alloy will be much harder and stronger. Adding a small amount of non-metallic carbon to iron produces an alloy called steel. Due to its very-high strength and toughness (which is much higher than pure iron), and its ability to be greatly altered by heat treatment, steel is one of the most common alloys in modern use. By adding chromium to steel, its resistance to corrosion can be enhanced, creating stainless steel, while adding silicon will alter its electrical characteristics, producing silicon steel. Although the elements usually must be soluble in the liquid state, they may not always be soluble in the solid state. If the metals remain soluble when solid, the alloy forms a solid solution, becoming a homogeneous structure consisting of identical crystals, called a phase. If the mixture cools and the constituents become insoluble, they may separate to form two or more different types of crystals, creating a heterogeneous microstructure of different phases. However, in other alloys, the insoluble elements may not separate until after crystallization occurs. These alloys are called intermetallic alloys because, if cooled very quickly, they first crystallizes as a homogenous phase, but they are supersaturated with the secondary constituents. As time passes, the atoms of these supersaturated alloys separate within the crystals, forming intermetallic phases that serve to reinforce the crystals internally. Some alloys occur naturally, such as electrum, which is an alloy that is native to Earth, consisting of silver and gold. Meteorites are sometimes made of naturally-occurring alloys of iron and nickel, but are not native to the Earth. One of the first alloys made by humans was bronze, which is made by mixing the metals tin and copper. Bronze was an extremely useful alloy to the ancients, because it is much stronger and harder than either of its components. Steel was another common alloy. However, in ancient times, it could only be created as an accidental byproduct from the heating of iron ore in fires (smelting) during the manufacture of iron. Other ancient alloys include pewter, brass and pig iron. In the modern age, steel can be created in many forms. Carbon steel can be made by varying only the carbon content, producing soft alloys like mild steel or hard alloys like spring steel. Alloy steels can be made by adding other elements, such as molybdenum, vanadium or nickel, resulting in alloys such as high-speed steel or tool steel. Small amounts of manganese are usually alloyed with most modern-steels because of its ability to remove unwanted impurities, like phosphorus, sulfur and oxygen, which can have detrimental effects on the alloy. However, most alloys were not created until the 1900s, such as various aluminum, titanium, nickel, and magnesium alloys. Some modern superalloys, such as incoloy, inconel, and hastelloy, may consist of a multitude of different components. The term alloy is used to describe a mixture of atoms in which the primary constituent is a metal. The primary metal is called the base, the matrix, or the solvent. The secondary constituents are often called solutes. If there is a mixture of only two types of atoms, not counting impurities, such as a copper-nickel alloy, then it is called a binary alloy. If there are three types of atoms forming the mixture, such as iron, nickel and chromium, then it is called a ternary alloy. An alloy with four constituents is a quaternary alloy, while a five-part alloy is termed a quinary alloy. Because the percentage of each constituent can be varied, with any mixture the entire range of possible variations is called a system. In this respect, all of the various forms of an alloy containing only two constituents, like iron and carbon, is called a binary system, while all of the alloy combinations possible with a ternary alloy, such as alloys of iron, carbon and chromium, is called a ternary system. Although an alloy is an impure metal, when referring to alloys, the term "impurities" usually denotes those elements which are not desired. These impurities are often found in the base metals or the solutes, but they may also be introduced during the alloying process. For instance, sulfur is a common impurity in steel. Sulfur combines readily with iron to form iron sulfide, which is very brittle, creating weak spots in the steel. Lithium, sodium and calcium are common impurities in aluminum alloys, which can have adverse effects on the structural integrity of castings. Conversely, otherwise pure-metals that simply contain unwanted impurities are often called "impure metals" and are not usually referred to as alloys. Oxygen, present in the air, readily combines with most metals to form metal oxides; especially at higher temperatures encountered during alloying. Great care is often taken during the alloying process to remove excess impurities, using fluxes, chemical additives, or other methods of extractive metallurgy. In practice, some alloys are used so predominantly with respect to their base metals that the name of the primary constituent is also used as the name of the alloy. For example, 14 karat gold is an alloy of gold with other elements. Similarly, the silver used in jewelry and the aluminium used as a structural building material are also alloys. The term "alloy" is sometimes used in everyday speech as a synonym for a particular alloy. For example, automobile wheels made of an aluminium alloy are commonly referred to as simply "alloy wheels", although in point of fact steels and most other metals in practical use are also alloys. Alloying a metal is done by combining it with one or more other metals or non-metals that often enhance its properties. For example, steel is stronger than iron, its primary element. The physical properties, such as density, reactivity, Young's modulus, and electrical and thermal conductivity, of an alloy may not differ greatly from those of its elements, but engineering properties such as tensile strength and shear strength may be substantially different from those of the constituent materials. This is sometimes a result of the sizes of the atoms in the alloy, because larger atoms exert a compressive force on neighboring atoms, and smaller atoms exert a tensile force on their neighbors, helping the alloy resist deformation. Sometimes alloys may exhibit marked differences in behavior even when small amounts of one element are present. For example, impurities in semiconducting ferromagnetic alloys lead to different properties, as first predicted by White, Hogan, Suhl, Tian Abrie and Nakamura. Some alloys are made by melting and mixing two or more metals. Bronze, an alloy of copper and tin, was the first alloy discovered, during the prehistoric period now known as the bronze age; it was harder than pure copper and originally used to make tools and weapons, but was later superseded by metals and alloys with better properties. In later times bronze has been used for ornaments, bells, statues, and bearings. Brass is an alloy made from copper and zinc. Unlike pure metals, most alloys do not have a single melting point, but a melting range in which the material is a mixture of solid and liquid phases. The temperature at which melting begins is called the solidus, and the temperature when melting is just complete is called the liquidus. However, for most alloys there is a particular proportion of constituents (in rare cases two)—the eutectic mixture—which gives the alloy a unique melting point. When a molten metal is mixed with another substance, there are two mechanisms that can cause an alloy to form, called atom exchange and the interstitial mechanism. The relative size of each atom in the mix plays a primary role in determining which mechanism will occur. When the atoms are relatively similar in size, the atom exchange method usually happens, where some of the atoms composing the metallic crystals are substituted with atoms of the other constituent. This is called a substitutional alloy. Examples of substitutional alloys include bronze and brass, in which some of the copper atoms are substituted with either tin or zinc atoms. With the interstitial mechanism, one atom is usually much smaller than the other, so cannot successfully replace an atom in the crystals of the base metal. The smaller atoms become trapped in the spaces between the atoms in the crystal matrix, called the interstices. This is referred to as an interstitial alloy. Steel is an example of an interstitial alloy, because the very small carbon atoms fit into interstices of the iron matrix. Stainless steel is an example of a combination of interstitial and substitutional alloys, because the carbon atoms fit into the interstices, but some of the iron atoms are replaced with nickel and chromium atoms. Alloys are often made to alter the mechanical properties of the base metal, to induce hardness, toughness, ductility, or other desired properties. Most metals and alloys can be work hardened by creating defects in their crystal structure. These defects are created during plastic deformation, such as hammering or bending, and are permanent unless the metal is recrystallized. However, some alloys can also have their properties altered by heat treatment. Nearly all metals can be softened by annealing, which recrystallizes the alloy and repairs the defects, but not as many can be hardened by controlled heating and cooling. Many alloys of aluminium, copper, magnesium, titanium, and nickel can be strengthened to some degree by some method of heat treatment, but few respond to this to the same degree that steel does. At a certain temperature, (usually between and ), the base metal of steel (iron) undergoes a change in the arrangement of the atoms in its crystal matrix, called allotropy. This allows the small carbon atoms to enter the interstices of the crystal, diffusing into the iron matrix. When this happens, the carbon atoms are said to be in solution, or mixed with the iron, forming a single, homogeneous, crystalline phase called austenite. If the steel is cooled slowly, the iron will gradually change into its low temperature allotrope. When this happens the carbon atoms will no longer be soluble with the iron, and will be forced to precipitate out of solution, nucleating into the spaces between the crystals. The steel then becomes heterogeneous, being formed of two phases; the carbon (carbide) phase cementite, and ferrite (iron). This type of heat treatment produces steel that is rather soft and bendable. However, if the steel is cooled quickly the carbon atoms will not have time to precipitate. When rapidly cooled, a diffusionless (martensite) transformation occurs, in which the carbon atoms become trapped in solution. This causes the iron crystals to deform intrinsically when the crystal structure tries to change to its low temperature state, making it very hard and brittle. Conversely, most heat-treatable alloys are precipitation hardening alloys, which produce the opposite effects that steel does. When heated to form a solution and then cooled quickly, these alloys become much softer than normal, during the diffusionless transformation, and then harden as they age. The solutes in these alloys will precipitate over time, forming intermetallic phases, which are difficult to discern from the base metal. Unlike steel, in which the solid solution separates to form different crystal phases, precipitation hardening alloys separate to form different phases within the same crystal. These intermetallic alloys appear homogeneous in crystal structure, but tend to behave heterogeneous, becoming hard and somewhat brittle. The use of alloys by humans started with the use of meteoric iron, a naturally occurring alloy of nickel and iron. As no metallurgic processes were used to separate iron from nickel, the alloy was used as it was. Meteoric iron could be forged from a red heat to make objects such as tools, weapons, and nails. In many cultures it was shaped by cold hammering into knives and arrowheads. They were often used as anvils. Meteoric iron was very rare and valuable, and difficult for ancient people to work. Iron is usually found as iron ore on Earth, except for one deposit of native iron in Greenland, which was used by the Inuit people. Native copper, however, was found worldwide, along with silver, gold and platinum, which were also used to make tools, jewelry, and other objects since Neolithic times. Copper was the hardest of these metals, and the most widely distributed. It became one of the most important metals to the ancients. Eventually, humans learned to smelt metals such as copper and tin from ore, and, around 2500 BC, began alloying the two metals to form bronze, which is much harder than its ingredients. Tin was rare, however, being found mostly in Great Britain. In the Middle East, people began alloying copper with zinc to form brass. Ancient civilizations took into account the mixture and the various properties it produced, such as hardness, toughness and melting point, under various conditions of temperature and work hardening, developing much of the information contained in modern alloy constitution diagrams. Mercury had been smelted from cinnabar for thousands of years. Mercury dissolves many metals, such as gold, silver, and tin, to form amalgams (an alloy in a soft paste, or liquid form at ambient temperature). Amalgams have been used since 200 BC in China for plating objects with precious metals, called gilding, such as armor and mirrors. The ancient Romans often used mercury-tin amalgams for gilding their armor. The amalgam was applied as a paste and then heated until the mercury vaporized, leaving the gold, silver, or tin behind. Mercury was often used in mining, to extract precious metals like gold and silver from their ores. Many ancient civilizations alloyed metals for purely aesthetic purposes. In ancient Egypt and Mycenae, gold was often alloyed with copper to produce red-gold, or iron to produce a bright burgundy-gold. Silver was often found alloyed with gold. These metals were also used to strengthen each other, for more practical purposes. Quite often, precious metals were alloyed with less valuable substances as a means to deceive buyers. Around 250 BC, Archimedes was commissioned by the king to find a way to check the purity of the gold in a crown, leading to the famous bath-house shouting of "Eureka!" upon the discovery of Archimedes' principle. The first known smelting of iron began in Anatolia, around 1800 BC. Called the bloomery process, it produced very soft but ductile wrought iron and, by 800 BC, the technology had spread to Europe. Pig iron, a very hard but brittle alloy of iron and carbon, was being produced in China as early as 1200 BC, but did not arrive in Europe until the Middle Ages. Pig iron has a lower melting point than iron, and was used for making cast-iron. However, these metals found little practical use until the introduction of crucible steel around 300 BC. These steels were of poor quality, and the introduction of pattern welding, around the 1st century AD, sought to balance the extreme properties of the alloys by laminating them, to create a tougher metal. Around 700 AD, the Japanese began folding bloomery-steel and cast-iron in alternating layers to increase the strength of their swords, using clay fluxes to remove slag and impurities. This method of Japanese swordsmithing produced one of the purest steel-alloys of ancient times. While the use of iron started to become more widespread around 1200 BC, mainly because of interruptions in the trade routes for tin, the metal is much softer than bronze. However, very small amounts of steel, (an alloy of iron and around 1% carbon), was always a byproduct of the bloomery process. The ability to modify the hardness of steel by heat treatment had been known since 1100 BC, and the rare material was valued for use in tool and weapon making. Because the ancients could not produce temperatures high enough to melt iron fully, the production of steel in decent quantities did not occur until the introduction of blister steel during the Middle Ages. This method introduced carbon by heating wrought iron in charcoal for long periods of time, but the penetration of carbon was not very deep, so the alloy was not homogeneous. In 1740, Benjamin Huntsman began melting blister steel in a crucible to even out the carbon content, creating the first process for the mass production of tool steel. Huntsman's process was used for manufacturing tool steel until the early 1900s. With the introduction of the blast furnace to Europe in the Middle Ages, pig iron was able to be produced in much higher volumes than wrought iron. Because pig iron could be melted, people began to develop processes of reducing the carbon in the liquid pig iron to create steel. Puddling was introduced during the 1700s, where molten pig iron was stirred while exposed to the air, to remove the carbon by oxidation. In 1858, Sir Henry Bessemer developed a process of steel-making by blowing hot air through liquid pig iron to reduce the carbon content. The Bessemer process was able to produce the first large scale manufacture of steel. Once the Bessemer process began to gain widespread use, other alloys of steel began to follow. Mangalloy, an alloy of steel and manganese exhibiting extreme hardness and toughness, was one of the first alloy steels, and was created by Robert Hadfield in 1882. In 1906, precipitation hardening alloys were discovered by Alfred Wilm. Precipitation hardening alloys, such as certain alloys of aluminium, titanium, and copper, are heat-treatable alloys that soften when quenched (cooled quickly), and then harden over time. After quenching a ternary alloy of aluminium, copper, and magnesium, Wilm discovered that the alloy increased in hardness when left to age at room temperature. Although an explanation for the phenomenon was not provided until 1919, duralumin was one of the first "age hardening" alloys to be used, and was soon followed by many others. Because they often exhibit a combination of high strength and low weight, these alloys became widely used in many forms of industry, including the construction of modern aircraft.
Laves phases are intermetallic phases that have composition AB2 and are named for Fritz Laves who first described them. The phases are classified on the basis of geometry alone. There are three different classification classes: cubic MgCu2 (C15), hexagonal MgZn2 (C14), and hexagonal MgNi2 (C36). The latter two classes are unique forms of the hexagonal arrangement, but share the same basic structure. In general, the A atoms are ordered as in diamond, hexagonal diamond, or a related structure, and the B atoms form tetrahedra around the A atoms for the AB2 structure. Laves phases are of particular interest in modern metallurgy research because of their abnormal physical and chemical properties. Many hypothetical or primitive applications have been developed. However, little practical knowledge has been elucidated from Laves phase study so far. A characteristic feature is the almost perfect electrical conductivity, but they are not plastically deformable at room temperature. In each of the three classes of Laves phase, if the two types of atom were perfect spheres with a size ratio of \sqrt{3/2} \approx 1.225, the structure would be topologically tetrahedrally close-packed. At this size ratio, the structure has an overall packing volume density of 0.710 Compounds found in Laves phases typically have an atomic size ratio between 1.05 and 1.67. Analogues of Laves phases can be formed by the self assembly of a colloidal dispersion of two sizes of sphere.
Solid in which components are compatible and form a unique phase. Note 1: The definition “crystal containing a second constituent which fits into and
is distributed in the lattice of the host crystal” given in refs., is not general
and, thus, is not recommended. Note 2: The expression is to be used to describe a solid phase containing
more than one substance when, for convenience, one (or more) of the substances,
called the solvent, is treated differently from the other substances, called solutes. Note 3: One or several of the components can be macromolecules. Some of
the other components can then act as plasticizers, i.e., as molecularly dispersed
substances that decrease the glass-transition temperature at which the amorphous
phase of a polymer is converted between glassy and rubbery states. Note 4: In pharmaceutical preparations, the concept of solid solution is often
applied to the case of mixtures of drug and polymer. Note 5: The number of drug molecules that do behave as solvent (plasticizer)
of polymers is small. A solid solution is a solid-state solution of one or more solutes in a solvent. Such a mixture is considered a solution rather than a compound when the crystal structure of the solvent remains unchanged by addition of the solutes, and when the mixture remains in a single homogeneous phase. This often happens when the two elements (generally metals) involved are close together on the periodic table; conversely, a chemical compound is generally a result of the non-proximity of the two metals involved on the periodic table. The solid solution need to be distinguished from a mechanical mixture of powdered solids like two salts, sugar and salt, etc. The mechanical mixtures have total or partial miscibility gap in solid state. Examples of solid solutions include cristalyzed salts from their liquid mixture, metal alloys, moist solids. In the case of metal alloys intermetallic compounds occur frequently. The solute may incorporate into the solvent crystal lattice substitutionally, by replacing a solvent particle in the lattice, or interstitially, by fitting into the space between solvent particles. Both of these types of solid solution affect the properties of the material by distorting the crystal lattice and disrupting the physical and electrical homogeneity of the solvent material. Some mixtures will readily form solid solutions over a range of concentrations, while other mixtures will not form solid solutions at all. The propensity for any two substances to form a solid solution is a complicated matter involving the chemical, crystallographic, and quantum properties of the substances in question. Substitutional solid solutions, in accordance with the Hume-Rothery rules, may form if the solute and solvent have: The phase diagram in Fig. 1 displays an alloy of two metals which forms a solid solution at all relative concentrations of the two species. In this case, the pure phase of each element is of the same crystal structure, and the similar properties of the two elements allow for unbiased substitution through the full range of relative concentrations. Solid solutions have important commercial and industrial applications, as such mixtures often have superior properties to pure materials. Many metal alloys are solid solutions. Even small amounts of solute can affect the electrical and physical properties of the solvent. The binary phase diagram in Fig. 2 shows the phases of a mixture of two substances in varying concentrations, A and B. The region labeled "\alpha" is a solid solution, with B acting as the solute in a matrix of A. On the other end of the concentration scale, the region labeled "\beta" is also a solid solution, with A acting as the solute in a matrix of B. The large solid region in between the \alpha and \beta solid solutions, labeled "\alpha + \beta", is not a solid solution. Instead, an examination of the microstructure of a mixture in this range would reveal two phases — solid solution A-in-B and solid solution B-in-A would form separate phases, perhaps lamella or grains. In the phase diagram, at three different concentrations, the material will be solid until it's heated to its melting point, and then (after adding the heat of fusion) become liquid at that same temperature: At other proportions, the material will enter a mushy or pasty phase until it warms up to being completely melted. The mixture at the dip point of the diagram is called a eutectic alloy. Lead-tin mixtures formulated at that point (37/63 mixture) are useful when soldering electronic components, particularly if done manually, since the solid phase is quickly entered as the solder cools. In contrast, when lead-tin mixtures were used to solder seams in automobile bodies a pasty state enabled a shape to be formed with a wooden paddle or tool, so a 70-30 lead to tin ratio was used. (Lead is being removed from such applications owing to its toxicity and consequent difficulty in recycling devices and components that include lead.) When a solid solution becomes unstable — due to a lower temperature, for example — exsolution occurs and the two phases separate into distinct microscopic to megascopic lamellae. This is mainly caused by difference in cation size. Cations which have a large difference in radii are not likely to readily substitute. Take the alkali feldspar minerals for example, whose end members are albite, NaAlSi3O8 and microcline, KAlSi3O8. At high temperatures Na+ and K+ readily substitute for each other and so the minerals will form a solid solution, yet at low temperatures albite can only substitute a small amount of K+ and the same applies for Na+ in the microcline. This leads to exsolution where they will separate into two separate phases. In the case of the alkali feldspar minerals, thin white albite layers will alternate between typically pink microcline.
The liquidus temperature, TL or Tliq, is mostly used for glasses, alloys and rocks. It specifies the maximum temperature at which crystals can co-exist with the melt in thermodynamic equilibrium. Above the liquidus temperature the material is homogeneous and liquid at equilibrium. Below the liquidus temperature more and more crystals may form in the melt if one waits a sufficiently long time, depending on the material. However, even below the liquidus temperature homogeneous glasses can be obtained through sufficiently fast cooling, i.e., through kinetic inhibition of the crystallization process. The crystal phase that crystallizes first on cooling a substance to its liquidus temperature is termed primary crystalline phase or primary phase. The composition range within which the primary phase remains constant is known as primary crystalline phase field. The liquidus temperature is important in the glass industry because crystallization can cause severe problems during the glass melting and forming processes, and it also may lead to product failure. The liquidus temperature can be contrasted to the solidus temperature. The solidus temperature quantifies the point at which a material completely solidifies (crystallizes). The liquidus and solidus temperatures do not necessarily align or overlap; if a gap exists between the liquidus and solidus temperatures, then within that gap, the material consists of solid and liquid phases simultaneously (like a slurry). For pure substances, e.g. pure metal, pure water, etc. the liquidus and solidus are at the same temperature, and the term "melting point" may be used. For impure substances, e.g. alloys, tap water, coca cola, ice cream, etc. the melting point broadens into a melting interval instead. If the temperature is within the melting interval, one may see "slurries" at equilibrium, i.e. the slurry will neither fully solidify nor melt. This is why new snow of high purity either melts or stays solid, while dirty snow on the ground tend to become slushy at certain temperatures. Weld melt pools containing high levels of sulfur, either from melted impurities from the base metal or from the welding electrode, typically have very broad melting intervals, which leads to increased risk of hot cracking.
Homogeneous as a term in physical chemistry and material science refers to substances and mixtures which are in a single phase. This is in contrast to a substance that is heterogeneous. The definition of homogeneous strongly depends on the context used. Generally it refers to smooth variation of properties with no discontinuities or jumps. In Chemistry, a homogeneous suspension of material means that when dividing the volume in half, the same amount of material is suspended in both halves of the substance. However, it might be possible to see the particles under a microscope. An example of a homogeneous mixture is air. Air can be more specifically described as a gaseous solution (oxygen and other gases dissolved in the major component, nitrogen). Since interactions between molecules play almost no role, dilute gases form rather trivial solutions. In part of the literature, they are not even classified as solutions. In Chemistry, some mixtures are homogeneous. In other words, mixtures have the same proportions throughout a given sample or multiple samples of different proportion to create a consistent mixture. However, two homogeneous mixtures of the same pair of substances may differ widely from each other and can be homogenized to make a constant. Homogeneous mixtures have always the same composition. Mixtures can be characterized by being separable by mechanical means e.g. A solution is a special type of homogeneous mixture. Solutions are homogeneous because, the ratio of solute to solvent remains the same throughout the solution even if homogenized with multiple sources, and stable because, the solute will not settle out, no matter how long the solution sits, and it cannot be removed by a filter or a centrifuge. This type of mixture is very stable, i.e., its particles do not settle, or separate. As a homogeneous mixture, a solution has one phase (liquid) although the solute and solvent can vary: for example, salt water. In chemistry, a mixture is a substance containing two or more elements or compounds that are not covalently bound to each other and which retain their own chemical and physical identities; – a substance which has two or more constituent physical substances. Mixtures, in the broader sense, are two or more substances physically in the same place, but these are not chemically combined, and therefore ratios are not necessarily considered.
Intermetallic or intermetallic compound is a term that is used in a number of different ways. Most commonly it refers to solid-state phases involving metals. There is a "research definition" adhered to generally in scientific publications, and a wider "common use" term. There is also a completely different use in coordination chemistry, where it has been used to refer to complexes containing two or more different metals. Although the term intermetallic compounds, as it applies to solid phases, has been in use for many years, its introduction was regretted, for example by Hume-Rothery in 1955. Note that many intermetallic compounds are often simply called 'alloys', although this is somewhat of a misnomer. Both are metallic phases containing more than one element, but in alloys the various elements substitute randomly for one another in the crystal structure, forming a solid solution with a range of possible compositions; in intermetallic compounds, different elements are ordered into different sites in the structure, with distinct local environments and often a well-defined, fixed stoichiometry. Complex structures with very large unit cells can be formed. Schulze in 1967, defined intermetallic compounds as solid phases containing two or more metallic elements, with optionally one or more non-metallic elements, whose crystal structure differs from that of the other constituents. Under this definition the following are included The definition of a metal is taken to include: Alloys, which are homogeneous solid solutions of metals, and interstitial compounds such as the carbides and nitrides are excluded under this definition. However, interstitial intermetallic compounds are included as are alloys of intermetallic compounds with a metal. In common use, the research definition, including poor metals and metalloids, is extended to include compounds such as cementite, Fe3C. These compounds, sometimes termed interstitial compounds can be stoichiometric, and share similar properties to the intermetallic compounds defined above. The term intermetallic is used to describe compounds involving two or more metals such as the cyclopentadienyl complex Cp6Ni2Zn4. Intermetallic compounds are generally brittle and have a high melting point. They often offer a compromise between ceramic and metallic properties when hardness and/or resistance to high temperatures is important enough to sacrifice some toughness and ease of processing. They can also display desirable magnetic, superconducting and chemical properties, due to their strong internal order and mixed (metallic and covalent/ionic) bonding, respectively. Intermetallics have given rise to various novel materials developments. Some examples include alnico and the hydrogen storage materials in nickel metal hydride batteries. Ni3Al, which is the hardening phase in the familiar nickel-base superalloys, and the various titanium aluminides have also attracted interest for turbine blade applications, while the latter is also used in very small quantities for grain refinement of titanium alloys. Silicides, intermetallics involving silicon, are utilized as barrier and contact layers in microelectronics. The formation of intermetallics can cause problems. Intermetallics of gold and aluminium can be a significant cause of wire bond failures in semiconductor devices and other microelectronics devices. There are five intermetallic compounds in the binary phase diagram of Al–Au. AuAl2 is known as "purple plague". Au5Al2 is known as "white plague". Examples of intermetallics through history include: German type metal is described as breaking like glass, not bending, softer than copper but more fusible than lead. The chemical formula does not agree with the one above; however, the properties match with an intermetallic compound or an alloy of one.
Solid solution strengthening is a type of alloying that can be used to improve the strength of a pure metal. The technique works by adding atoms of one element (the alloying element) to the crystalline lattice of another element (the base metal). The alloying element diffuses into the matrix, forming a solid solution. In most binary systems, when alloyed above a certain concentration, a second phase will form. When this increases the strength of the material, the process is known as precipitation strengthening, but this is not always the case. Depending on the size of the alloying element, a substitutional solid solution or an interstitial solid solution can form. In both cases, the overall crystal structure is essentially unchanged. Substitutional solid solution strengthening occurs when the solute atom is large enough that it can replace solvent atoms in their lattice positions. According to the Hume-Rothery rules, solvent and solute atoms must differ in atomic size by less than 15% in order to form this type of solution. Because both elements exist in the same crystalline lattice, both elements in their pure form must be of the same crystal structure. Examples of substitutional solid solutions include the Cu-Ni and the Ag-Au FCC binary systems, and the Mo-W BCC binary system. When the solute atom is equal to or slightly smaller and can fill the interstices of the solvent atoms, an interstitial solid solution forms. The atoms crowd into the interstitial sites, causing the bonds of the solvent atoms to compress and thus deform.Elements commonly used to form interstitial solid solutions include H, Li, Na, N, C, and O. Carbon in iron (steel) is one example of interstitial solid solution. The strength of a material is dependent on how easily dislocations in its crystal lattice can be propagated. These dislocations create stress fields within the material depending on their character. When solute atoms are introduced, local stress fields are formed that interact with those of the dislocations, impeding their motion and causing an increase in the yield stress of the material, which means an increase in strength of the material. This gain is a result of both lattice distortion and the modulus effect. When solute and solvent atoms differ in size, local stress fields are created. Depending on their relative locations, solute atoms will either attract or repel dislocations in their vicinity. This is known as the size effect. This allows the solute atoms to relieve either tensile or compressive strain in the lattice, which in turn puts the dislocation in a lower energy state. In substitutional solid solutions, these stress fields are spherically symmetric, meaning they have no shear stress component. As such, substitutional solute atoms do not interact with the shear stress fields characteristic of screw dislocations. Conversely, in interstitial solid solutions, solute atoms cause a tetragonal distortion, generating a shear field that can interact with both edge, screw, and mixed dislocations. The attraction or repulsion of the dislocation centers to the solute particles increase the stress it takes to propagate the dislocation in any other direction. Increasing the applied stress to move the dislocation increases the yield strength of the material. The energy density of a dislocation is dependent on its Burgers vector as well as the modulus of the local atoms. When the modulus of solute atoms differs from that of the host element, the local energy around the dislocation is changed, increasing the amount of force necessary to move past this energy well. This is known as the modulus effect. Meanwhile, in the specific case of a lattice distortion, the difference in lattice parameter leads to a high stress field around that solute atom that impedes dislocation movement. Surface carburizing, or case hardening, is one example of solid solution strengthening in which the density of solute carbon atoms is increased close to the surface of the steel, resulting in a gradient of carbon atoms throughout the material. This provides superior mechanical properties to the surface of the steel. Solid solution strengthening increases yield strength of the material by increasing the stress \tau to move dislocations: \Delta \tau =Gb \epsilon^\tfrac 3 2 \sqrt c where c is the concentration of the solute atoms, G is the shear modulus, b is the magnitude of the Burger's vector, and \epsilon is the lattice strain due to the solute. This is composed of two terms, one describing lattice distortion and the other local modulus change. \epsilon = | \epsilon_a - \beta \epsilon_G | Here, \epsilon_a is the lattice distortion term, \beta a constant dependent on the solute atoms and \epsilon_G the term that captures the local modulus change. The lattice distortion term can be described as: \epsilon_a = \dfrac {\Delta a}{a\Delta c}, where a is the lattice parameter of the material. Meanwhile, the local modulus change is captured in the following expression: \epsilon_G = \dfrac {\Delta G}{G\Delta c}, where G is shear modulus of the solute material, In order to achieve noticeable material strengthening via solute solution strengthening one should alloy with solutes of higher shear modulus, hence increasing the local shear modulus in the material. In addition, one should alloy with elements of different equilibrium lattice constants. The greater the difference in lattice parameter, the higher the local stress fields introduced by alloying. Alloying with elements of higher shear modulus or of very different lattice parameters will increase the stiffness and introduce local stress fields respectively. In either case, the dislocation propagation will be hindered at these sites, impeding plasticity and increasing yield strength proportionally with solute concentration. Solid solution strengthening depends on:
- Concentration of solute atoms
- Shear modulus of solute atoms
- Size of solute atoms
- Valency of solute atoms (for ionic materials) Nevertheless, one should not add so much solute as to precipitate a new phase. This occurs if the concentration of the solute reaches a high critical point given by the binary system phase diagram. This critical concentration therefore puts a limit to the amount of solid solution strengthening a material can have, as the material cannot be infinitely strengthened.

Solid in which components are compatible and form a unique phase.

Note 1: The definition “crystal containing a second constituent which fits into and
is distributed in the lattice of the host crystal” given in refs., is not general
and, thus, is not recommended.

Solution Phase

Heat treating is a group of industrial and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve a desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering and quenching. It is noteworthy that while the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.

In printing, type metal (sometimes called hot metal) refers to the metal alloys used in traditional typefounding and hot metal typesetting. Lead is the main constituent of these alloys. Antimony and tin are added to make the character produced durable and tough while reducing the difference between the coefficients of expansion of the matrix and the alloy.

Chemistry Metallurgy

Materials science, also commonly known as materials engineering, is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This relatively new scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. It incorporates elements of applied physics and chemistry. With significant media attention focused on nanoscience and nanotechnology in recent years, materials science is becoming more widely known as a specific field of science and engineering. It is an important part of forensic engineering (Forensic engineering is the investigation of materials, products, structures or components that fail or do not operate or function as intended, causing personal injury or damage to property.) and failure analysis, the latter being the key to understanding, for example, the cause of various aviation accidents. Many of the most pressing scientific problems that are currently faced today are due to the limitations of the materials that are currently available and, as a result, breakthroughs in this field are likely to have a significant impact on the future of human technology.

Health Medical Pharma Environment Technology Internet Health Medical Pharma Technology Internet


Related Websites:

Terms of service | About