Question:

If an 80.0 gram sample of water at 10 degrees Celsius absorbs 1680 joules of heat energy. What is the final temp of the water?

Answer:

Water heating is a thermodynamic process using an energy source to heat water above its initial temperature. Typical domestic uses of hot water are for cooking, cleaning, bathing, and space heating. In industry, both hot water and water heated to steam have many uses. AnswerParty!

More Info:

joules

Water heating is a thermodynamic process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated to steam have many uses.

Domestically, water is traditionally heated in vessels known as water heaters, kettles, cauldrons, pots, or coppers. These metal vessels that heat a batch of water do not produce a continual supply of heated water at a preset temperature. Rarely, hot water occurs naturally, usually from natural hot springs. The temperature varies based on the consumption rate, becoming cooler as flow increases.

A thermodynamic process is the energetic development of a thermodynamic system proceeding from an initial state to a final state. Paths through the space of thermodynamic variables are often specified by holding certain thermodynamic variables constant. A state function is a thermodynamic variable which depends only on the current state of the system, not the path taken to reach that state. Conversely a process function does depend on the path.

A space heater is a self-contained device for heating an enclosed area. Space heating is generally employed to warm a small space, and is usually held in contrast with central heating, which warms many connected spaces at once. Space heaters are usually portable or wall-mounted, and should be an electric heater in most cases, because natural gas or propane heating in an enclosed area is very dangerous without proper specialized ventilation systems.

Physics

Mechanical engineering is a discipline of engineering that applies the principles of engineering, physics and materials science for analysis, design, manufacturing, and maintenance of mechanical systems. It is the branch of engineering that involves the production and usage of heat and mechanical power for the design, production, and operation of machines and tools. It is one of the oldest and broadest engineering disciplines.

The engineering field requires an understanding of core concepts including mechanics, kinematics, thermodynamics, materials science, structural analysis, and electricity. Mechanical engineers use these core principles along with tools like computer-aided engineering, and product lifecycle management to design and analyze manufacturing plants, industrial equipment and machinery, heating and cooling systems, transport systems, aircraft, watercraft, robotics, medical devices, weapons, and others.

Thermodynamics

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy and heat between physical systems. As such, heat transfer is involved in almost every sector of the economy. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

Heat conduction, also called diffusion, is the direct microscopic exchange of kinetic energy of particles through the boundary between two systems. When an object is at a different temperature from another body or its surroundings, heat flows so that the body and the surroundings reach the same temperature, at which point they are in thermal equilibrium. Such spontaneous heat transfer always occurs from a region of high temperature to another region of lower temperature, as described by the second law of thermodynamics.

HVAC (heating, ventilation, and air conditioning) is the technology of indoor and vehicular environmental comfort. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. Refrigeration is sometimes added to the field's abbreviation as HVAC&R or HVACR, or ventilating is dropped as in HACR (such as the designation of HACR-rated circuit breakers).

HVAC is important in the design of medium to large industrial and office buildings such as skyscrapers and in marine environments such as aquariums, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors.

In thermodynamics, a state function, function of state, state quantity, or state variable is a property of a system that depends only on the current state of the system, not on the way in which the system acquired that state (independent of path). A state function describes the equilibrium state of a system. For example, internal energy, enthalpy, and entropy are state quantities because they describe quantitatively an equilibrium state of a thermodynamic system, irrespective of how the system arrived in that state. In contrast, mechanical work and heat are process quantities because their values depend on the specific transition (or path) between two equilibrium states.

The opposite of a state function is a path function.

Plumbing Steam Temperature Heat

A heat pump is a device that provides heat energy from a source of heat to a destination called a "heat sink". Heat pumps are designed to move thermal energy opposite to the direction of spontaneous heat flow by absorbing heat from a cold space and release it to a warmer one, and vice-versa. A heat pump uses some amount of external power to accomplish the work of transferring energy from the heat source to the heat sink.

While air conditioners and freezers are familiar examples of heat pumps, the term "heat pump" is more general and applies to HVAC devices used for space heating or space cooling. When a heat pump is used for heating, it employs the same basic refrigeration-type cycle used by an air conditioner or a refrigerator, but in the opposite direction - releasing heat into the air-conditioned space rather than the surrounding environment. In this use, heat pumps generally draw heat from the cooler external air or from the ground.

Environment

In physics and chemistry, especially in thermodynamics, transfer of energy as heat from a hotter to a colder body is a spontaneous process that occurs when the bodies have a suitable physical connection. It is measured as the quantity of energy transferred other than by work or by transfer of matter. The transfer can occur by conduction, radiation, and convective circulation.

In a heat engine, the internal energy supplied by a hot body can be harnessed in order to do work. This always requires the discharge of waste energy as heat to another body which is cold; the colder it is, the more efficient the process. In a heat pump or a refrigerator, external energy can be used to further lower the temperature of an already cold target body and raise the temperature of already hotter one. According to the second law of thermodynamics, this is possible only through consumption of energy as work. It requires a working substance that at one stage of its cycle is made colder than the target body. Such engines necessarily function cyclically, requiring thermodynamic operations as well as natural, spontaneous thermodynamic processes.

Energy development is a field of endeavor focused on making available sufficient primary energy sources and secondary energy forms to meet the needs of society. These endeavors encompass those which provide for the production of conventional, alternative and renewable sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the impact of energy development, and can have benefits to society with changes in economic cost and with changes in the environmental effects.

Contemporary industrial societies use primary and secondary energy sources for transportation and the production of many manufactured goods. Also, large industrial populations have various generation and delivery services for energy distribution and end-user utilization. This energy is used by people who can afford the cost to live under various climatic conditions through the use of heating, ventilation, and/or air conditioning. Level of use of external energy sources differs across societies, along with the convenience, levels of traffic congestion, pollution sources and availability of domestic energy sources.


Related Websites:


Terms of service | About
7