Question:

How much will a cube of brass weigh?

Answer:

Of course, different brasses and forms can vary, but at a specific gravity of about 8.5, a cubic inch of brass would weigh about 5 ounces (or just under a third of a pound).

More Info:


specific gravity

Specific gravity is the ratio of the density of a substance to the density (mass of the same unit volume) of a reference substance. Apparent specific gravity is the ratio of the weight of a volume of the substance to the weight of an equal volume of the reference substance. The reference substance is nearly always water for liquids or air for gases. Temperature and pressure must be specified for both the sample and the reference. Pressure is nearly always 1 atm equal to 101.325 kPa. Temperatures for both sample and reference vary from industry to industry. In British brewing practice the specific gravity as specified above is multiplied by 1000. Specific gravity is commonly used in industry as a simple means of obtaining information about the concentration of solutions of various materials such as brines, hydrocarbons, sugar solutions (syrups, juices, honeys, brewers wort, must etc.) and acids.

Specific gravity, as it is a ratio of densities, is a dimensionless quantity. Specific gravity varies with temperature and pressure; reference and sample must be compared at the same temperature and pressure, or corrected to a standard reference temperature and pressure. Substances with a specific gravity of 1 are neutrally buoyant in water, those with SG greater than one are denser than water, and so (ignoring surface tension effects) will sink in it, and those with an SG of less than one are less dense than water, and so will float. In scientific work the relationship of mass to volume is usually expressed directly in terms of the density (mass per unit volume) of the substance under study. It is in industry where specific gravity finds wide application, often for historical reasons.

Measurement
Imperial units

The system of imperial units or the imperial system (also known as British Imperial) is the system of units first defined in the British Weights and Measures Act of 1824, which was later refined and reduced. The system came into official use across the British Empire. By the late 20th century, most nations of the former empire had officially adopted the metric system as their main system of measurement, but some Imperial units are still used in the United Kingdom and Canada.

United States customary units are a system of measurements commonly used in the United States. The U.S. customary system developed from English units which were in use in the British Empire before American independence. Consequently most U.S. units are virtually identical to the British imperial units. However, the British system was overhauled in 1824, changing the definitions of some units used there, so several differences exist between the two systems.

The majority of U.S. customary units were redefined in terms of the meter and the kilogram with the Mendenhall Order of 1893, and in practice, for many years before. These definitions were refined by the international yard and pound agreement of 1959. The U.S. primarily uses customary units in its commercial activities, while science, medicine, government, and many sectors of industry use metric units. The SI metric system, or International System of Units is preferred for many uses by NIST

Brass
Units of mass

In physics, mass (from Greek μᾶζα "barley cake, lump [of dough]") is a property of a physical system or body, giving rise to the phenomena of the body's resistance to being accelerated by a force and the strength of its mutual gravitational attraction with other bodies. Instruments such as mass balances or scales use those phenomena to measure mass. The SI unit of mass is the kilogram (kg).

For everyday objects and energies well-described by Newtonian physics, mass has also been said to represent an amount of matter, but this view breaks down, for example, at very high speeds or for subatomic particles. Holding true more generally, any body having mass has an equivalent amount of energy, and all forms of energy resist acceleration by a force and have gravitational attraction; the term matter has no universally-agreed definition under this modern view.


Monumental brass

Monumental brass is a species of engraved sepulchral memorial which in the early part of the 13th century began to partially take the place of three-dimensional monuments and effigies carved in stone or wood. Made of hard latten or sheet brass, let into the pavement, and thus forming no obstruction in the space required for the services of the church, they speedily came into general use, and continued to be a favourite style of sepulchral memorial for three centuries.

Besides their great value as historical monuments, monumental brasses are interesting as authentic contemporary evidence of the varieties of armour and costume, or the peculiarities of palaeography and heraldic designs, and they are often the only authoritative records of the intricate details of family history. Although the intrinsic value of the metal has unfortunately contributed to the wholesale spoliation of these interesting monuments, they are still found in remarkable profusion in England, and they were at one time equally common in France, Germany and the Low Countries. In France, however, those that survived the troubles of the 16th century were totally swept away during the Reign of Terror, and almost the only evidence of their existence is now supplied by the collection of drawings bequeathed by Gough to the Bodleian Library.

Pound
News:


Related Websites:


Terms of service | About
163