Question:

How many years does it take a spent nuclear fuel rods to reach a safe level of radioactivity?

Answer:

Some say once the spent fuel is removed, the remaining radioactive materials decay to safe levels within decades to centuries.

More Info:

radioactivity

Nuclear physics is the field of physics that studies the constituents and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those in nuclear medicine and magnetic resonance imaging, ion implantation in materials engineering, and radiocarbon dating in geology and archaeology.

The field of particle physics evolved out of nuclear physics and is typically taught in close association with nuclear physics.

Nuclear technology is technology that involves the reactions of atomic nuclei. Among the notable nuclear technologies are nuclear power, nuclear medicine, and nuclear weapons. It has found applications from smoke detectors to nuclear reactors, and from gun sights to nuclear weapons.

Energy

Nuclear reprocessing technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel. Reprocessing serves multiple purposes, whose relative importance has changed over time. Originally reprocessing was used solely to extract plutonium for producing nuclear weapons. With the commercialization of nuclear power, the reprocessed plutonium was recycled back into MOX nuclear fuel for thermal reactors. The reprocessed uranium, which constitutes the bulk of the spent fuel material, can in principle also be re-used as fuel, but that is only economic when uranium prices are high. Finally, a breeder reactor is not restricted to using recycled plutonium and uranium. It can employ all the actinides, closing the nuclear fuel cycle and potentially multiplying the energy extracted from natural uranium by about 60 times.

Nuclear reprocessing reduces the volume of high-level waste, but by itself does not reduce radioactivity or heat generation and therefore does not eliminate the need for a geological waste repository. Reprocessing has been politically controversial because of the potential to contribute to nuclear proliferation, the potential vulnerability to nuclear terrorism, the political challenges of repository siting (a problem that applies equally to direct disposal of spent fuel), and because of its high cost compared to the once-through fuel cycle. In the United States, the Obama administration stepped back from President Bush's plans for commercial-scale reprocessing and reverted to a program focused on reprocessing-related scientific research. Nuclear fuel reprocessing is performed routinely in Europe, Russia and Japan.

Nuclear chemistry is the subfield of chemistry dealing with radioactivity, nuclear processes and nuclear properties.

It is the chemistry of radioactive elements such as the actinides, radium and radon together with the chemistry associated with equipment (such as nuclear reactors) which are designed to perform nuclear processes. This includes the corrosion of surfaces and the behavior under conditions of both normal and abnormal operation (such as during an accident). An important area is the behavior of objects and materials after being placed into a nuclear waste storage or disposal site. ass the atoms colliade they make a baby

Actinides

Radioactive wastes are wastes that contain radioactive material. Radioactive wastes are usually by-products of nuclear power generation and other applications of nuclear fission or nuclear technology, such as research and medicine. Radioactive waste is hazardous to most forms of life and the environment, and is regulated by government agencies in order to protect human health and the environment.

Radioactivity naturally decays over time, so radioactive waste has to be isolated and confined in appropriate disposal facilities for a sufficient period of time until it no longer poses a hazard. The period of time waste must be stored depends on the type of waste and radioactive isotopes. It can range from a few days for very short-lived isotopes to millions of years for spent nuclear fuel. Current major approaches to managing radioactive waste have been segregation and storage for short-lived waste, near-surface disposal for low and some intermediate level waste, and deep burial or partioning / transmutation for the high-level waste.

Nuclear fuel is a material that can be 'burned' by nuclear fission or fusion to derive nuclear energy. Nuclear fuel can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials.

Most nuclear fuels contain heavy fissile elements that are capable of nuclear fission. When these fuels are struck by neutrons, they are in turn capable of emitting neutrons when they break apart. This makes possible a self-sustaining chain reaction that releases energy with a controlled rate in a nuclear reactor or with a very rapid uncontrolled rate in a nuclear weapon.

Radioactive decay, also known as nuclear decay or radioactivity, is the process by which a nucleus of an unstable atom loses energy by emitting particles of ionizing radiation. A material that spontaneously emits this kind of radiation—which includes the emission of energetic alpha particles, beta particles, and gamma rays—is considered radioactive.

Radioactive decay is a stochastic (i.e., random) process at the level of single atoms, in that, according to quantum theory, it is impossible to predict when a particular atom will decay. However, the chance that a given atom will decay is constant over time. For a large number of atoms, the decay rate for the collection is computable from the measured decay constants of the nuclides (or equivalently from the half-lifes).

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle (or a once-through fuel cycle); if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

Environment

News:


Related Websites:


Terms of service | About
9