How many electrons does Tin and Sn have?


Overview of Tin - Atomic Number:50, Group: 14, Period: 5, Series: Metals. It has 50 electrons.

More Info:

electrons electrons Chemistry Physics
Chemical bonding

A chemical bond is an attraction between atoms that allows the formation of chemical substances that contain two or more atoms. The bond is caused by the electrostatic force of attraction between opposite charges, either between electrons and nuclei, or as the result of a dipole attraction. The strength of chemical bonds varies considerably; there are "strong bonds" such as covalent or ionic bonds and "weak bonds" such as dipole–dipole interactions, the London dispersion force and hydrogen bonding.

Since opposite charges attract via a simple electromagnetic force, the negatively charged electrons that are orbiting the nucleus and the positively charged protons in the nucleus attract each other. An electron positioned between two nuclei will be attracted to both of them, and the nuclei will be attracted toward electrons in this position. This attraction constitutes the chemical bond. Due to the matter wave nature of electrons and their smaller mass, they must occupy a much larger amount of volume compared with the nuclei, and this volume occupied by the electrons keeps the atomic nuclei relatively far apart, as compared with the size of the nuclei themselves. This phenomenon limits the distance between nuclei and atoms in a bond.

Tin Electron
Valence electron

In chemistry, a valence electron is an electron that is associated with an atom, and that can participate in the formation of a chemical bond; in a single covalent bond, both atoms in the bond contribute one valence electron in order to form a shared pair. The presence of valence electrons can determine the element's chemical properties and whether it may bond with other elements: For a main group element, a valence electron can only be in the outermost electron shell. In a transition metal, a valence electron can also be in an inner shell.

An atom with a closed shell of valence electrons (corresponding to an electron configuration s2p6) tends to be chemically inert. An atom with one or two valence electrons more than a closed shell is highly reactive, because the extra valence electrons are easily removed to form a positive ion. An atom with one or two valence electrons fewer than a closed shell is also highly reactive, because of a tendency either to gain the missing valence electrons (thereby forming a negative ion), or to share valence electrons (thereby forming a covalent bond).

Metallic bond

Metallic bonding constitutes the electrostatic attractive forces between the delocalized electrons, called conduction electrons, gathered in an electron cloud and the positively charged metal ions. Understood as the sharing of "free" electrons among a lattice of positively charged ions (cations), metallic bonding is sometimes compared with that of molten salts; however, this simplistic view]which?[ holds true for very few]which?[ metals. In a more quantum-mechanical view, the conduction electrons divide their density equally over all atoms that function as neutral (non-charged) entities.]citation needed[ Metallic bonding accounts for many physical properties of metals, such as strength, malleability, ductility, thermal and electrical conductivity, opacity, and luster.

Although the term "metallic bond" is often used in contrast to the term "covalent bond", it is preferable]by whom?[ to use the term metallic bonding, because this type of bonding is collective in nature and a single "metallic bond" does not exist. Metallic bond is not the only type of chemical bonding a metal can exhibit, even as a simple substance. For example, elemental gallium consists of covalently-bound pairs of atoms in both liquid and solid state—these pairs form a crystal lattice with metallic bonding between them. Another example of a metal–metal covalent bond is mercurous ion (Hg2+

Technology Internet

Related Websites:

Terms of service | About