Question:

How long have the storms been in Jupiter?

Answer:

Storms have been present in Jupiter's atmosphere as long as we have observed. Some seen in the 1990s formed in the 1930s. Thanks!

More Info:

Space
Planetary atmospheres

An atmosphere (New Latin atmosphaera, created in the 17th century from Greek ἀτμός [atmos] "vapor" and σφαῖρα [sphaira] "sphere") is a layer of gases surrounding a material body of sufficient mass that is held in place by the gravity of the body. An atmosphere is more likely to be retained if the gravity is high and the atmosphere's temperature is low.

Earth's atmosphere, which contains oxygen used by most organisms for respiration and carbon dioxide used by plants, algae and cyanobacteria for photosynthesis, also protects living organisms from genetic damage by solar ultraviolet radiation. Its current composition is the product of billions of years of biochemical modification of the paleoatmosphere by living organisms.

Spaceflight Storm
Exploration of Jupiter

The exploration of Jupiter has to date been conducted via close observations by automated spacecraft. It began with the arrival of Pioneer 10 into the Jovian system in 1973, and, as of 2008[update], has continued with seven further spacecraft missions. All of these missions were undertaken by the National Aeronautics and Space Administration (NASA), and all save one have been flybys that take detailed observations without the probe landing or entering orbit. These probes make Jupiter the most visited of the Solar System's outer planets as all missions to the outer planets must flyby Jupiter to increase the speed of the probe without needing an excessive amount of fuel that will be both expensive and weigh it down. Plans for more missions to the Jovian system are under development, none of which are scheduled to arrive at the planet before 2016. Sending a craft to Jupiter entails many technical difficulties, especially due to the probes' large fuel requirements and the effects of the planet's harsh radiation environment.

The first spacecraft to visit Jupiter was Pioneer 10 in 1973, followed a few months later by Pioneer 11. Aside from taking the first close-up pictures of the planet, the probes discovered its magnetosphere and its largely fluid interior. The Voyager 1 and Voyager 2 probes visited the planet in 1979, and studied its moons and the ring system, discovering the volcanic activity of Io and the presence of water ice on the surface of Europa. Ulysses further studied Jupiter's magnetosphere in 1992 and then again in 2000. The Cassini probe approached the planet in 2000 and took very detailed images of its atmosphere. The New Horizons spacecraft passed by Jupiter in 2007 and made improved measurements of its and its satellites' parameters.

The atmosphere of Jupiter is the largest planetary atmosphere in the Solar System. It is mostly made of molecular hydrogen and helium in roughly solar proportions; other chemical compounds are present only in small amounts and include methane, ammonia, hydrogen sulfide and water. Although water is thought to reside deep in the atmosphere, its directly measured concentration is very low. The oxygen, nitrogen, sulfur, and noble gas abundances in Jupiter's atmosphere exceed solar values by a factor of about three.

The atmosphere of Jupiter lacks a clear lower boundary and gradually transitions into the liquid interior of the planet. From lowest to highest, the atmospheric layers are the troposphere, stratosphere, thermosphere and exosphere. Each layer has characteristic temperature gradients. The lowest layer, the troposphere, has a complicated system of clouds and hazes, comprising layers of ammonia, ammonium hydrosulfide and water. The upper ammonia clouds visible at Jupiter's surface are organized in a dozen zonal bands parallel to the equator and are bounded by powerful zonal atmospheric flows (winds) known as jets. The bands alternate in color: the dark bands are called belts, while light ones are called zones. Zones, which are colder than belts, correspond to upwellings, while belts mark descending air. The zones' lighter color is believed to result from ammonia ice; what gives the belts their darker colors is not known with certainty. The origins of the banded structure and jets are not well understood, though two models exist. The shallow model holds that they are surface phenomena overlaying a stable interior. In the deep model, the bands and jets are just surface manifestations of deep circulation in Jupiter's mantle of molecular hydrogen, which is organized into cylinders.


Planetary science

Planetary science (rarely planetology) is the scientific study of planets (including Earth), moons, and planetary systems, in particular those of the Solar System and the processes that form them. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, originally growing from astronomy and earth science, but which now incorporates many disciplines, including planetary astronomy, planetary geology (together with geochemistry and geophysics), atmospheric science, oceanography, hydrology, theoretical planetary science, glaciology, and the study of extrasolar planets. Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

There are interrelated observational and theoretical branches of planetary science. Observational research can involve a combination of space exploration, predominantly with robotic spacecraft missions using remote sensing, and comparative, experimental work in Earth-based laboratories. The theoretical component involves considerable computer simulation and mathematical modelling.

Astronomy Jupiter Weather Environment
News:


Related Websites:


Terms of service | About
18