Question:

How long does light from the moon take to reach Earth?

Answer:

Light from the moon takes about 1.3 seconds to reach Earth. AnswerParty.

More Info:

Spaceflight Moon Moons Planemos Light

Lunar phase or phase of the moon refers to the shape of the illuminated (sunlit) portion of the Moon as seen by an observer, usually on Earth. The lunar phases change cyclically as the Moon orbits the Earth, according to the changing relative positions of the Earth, Moon, and Sun. The half of the lunar surface facing the Sun is always sunlit, but the portion of this illuminated hemisphere that is visible to an observer on Earth can vary from about 100% (full moon) to 0% (new moon). The lunar terminator is the boundary between the illuminated and unilluminated hemispheres. Aside from some craters near the lunar poles such as Shoemaker, all parts of the Moon see around 14.77 days of sunlight followed by 14.77 days of "night" (the "dark side" of the Moon is a reference to radio darkness, not visible light darkness).

The principal lunar phases are new moon, first quarter moon, full moon and last quarter moon. These are the instants, respectively, when the Moon's celestial longitude minus the Sun's celestial longitude is 0°, 90°, 180° and 270°.

The Moon has been the subject of many works of art and literature and the inspiration for countless others. It is a motif in the visual arts, the performing arts, poetry, prose and music.

Lucian's Icaromenippus and True History, written in the 2nd century AD, deal with imaginary voyages to the moon such as on a fountain after going past the Pillars of Hercules. The theme did not become popular until the 17th century, however, when the invention of the telescope hastened the popular acceptance of the concept of "a world in the Moon", that is, that the Moon was an inhabitable planet, which might be reached via some sort of aërial carriage. The concept of another world, close to our own and capable of looking down at it from a distance, provided ample scope for satirical comments on the manners of the Earthly world. Among the early stories dealing with this concept are:

The speed of light in vacuum, commonly denoted c, is a universal physical constant important in many areas of physics. Its value is exactly 299,792,458 metres per second, a figure that is exact because the length of the metre is defined from this constant and the international standard for time. This is approximately 186,282.4 miles per second, or about 671 million miles per hour. According to special relativity, c is the maximum speed at which all energy, matter, and information in the universe can travel. It is the speed at which all massless particles and associated fields (including electromagnetic radiation such as light) travel in vacuum. It is also the speed of gravity (i.e. of gravitational waves) predicted by current theories. Such particles and waves travel at c regardless of the motion of the source or the inertial frame of reference of the observer. In the theory of relativity, c interrelates space and time, and also appears in the famous equation of mass–energy equivalence E = mc2.

The speed at which light propagates through transparent materials, such as glass or air, is less than c. The ratio between c and the speed v at which light travels in a material is called the refractive index n of the material (n = c / v). For example, for visible light the refractive index of glass is typically around 1.5, meaning that light in glass travels at c / 1.5 ≈ 200,000 km/s; the refractive index of air for visible light is 1.000293, so the speed of light in air is 299,705 km/s or about 88 km/s slower than c.

Astronomy Space

Planetary science (rarely planetology) is the scientific study of planets (including Earth), moons, and planetary systems, in particular those of the Solar System and the processes that form them. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, originally growing from astronomy and earth science, but which now incorporates many disciplines, including planetary astronomy, planetary geology (together with geochemistry and geophysics), atmospheric science, oceanography, hydrology, theoretical planetary science, glaciology, and the study of extrasolar planets. Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

There are interrelated observational and theoretical branches of planetary science. Observational research can involve a combination of space exploration, predominantly with robotic spacecraft missions using remote sensing, and comparative, experimental work in Earth-based laboratories. The theoretical component involves considerable computer simulation and mathematical modelling.

Technology Internet Religion Belief

In journalism, a human interest story is a feature story that discusses a person or people in an emotional way. It presents people and their problems, concerns, or achievements in a way that brings about interest, sympathy or motivation in the reader or viewer.

Human interest stories may be "the story behind the story" about an event, organization, or otherwise faceless historical happening, such as about the life of an individual soldier during wartime, an interview with a survivor of a natural disaster, a random act of kindness or profile of someone known for a career achievement.

Environment Technology Internet Religion Belief
News:


Related Websites:


Terms of service | About
29