How is infrared detected?


An infrared camera is a non-contact device that detects infrared energy (heat) and converts it into an electronic signal...MORE?

More Info:

An infrared detector is a detector that reacts to infrared (IR) radiation. The two main types of detectors are thermal and photonic (photodetectors). The thermal effects of the incident IR radiation can be followed through many temperature dependent phenomena. Bolometers and microbolometers are based on changes in resistance. Thermocouples and thermopiles use the thermoelectric effect. Golay cells follow thermal expansion. In IR spectrometers the pyroelectric detectors are the most widespread. The response time and sensitivity of photonic detectors can be much higher, but usually these have to be cooled to cut thermal noise. The materials in these are semiconductors with narrow band gaps. Incident IR photons can cause electronic excitations. In photoconductive detectors, the resistivity of the detector element is monitored. Photovoltaic detectors contain a p-n junction on which photoelectric current appears upon illumination. A few detector materials: The range of pyroelectric detector is determined by the window materials used in their construction. Vanadium pentoxide is frequently used as a detector material in uncooled microbolometer arrays.
An infrared heater or heat lamp is a body with a higher temperature which transfers energy to a body with a lower temperature through electromagnetic radiation. Depending on the temperature of the emitting body, the wavelength of the infrared radiation ranges from to 1 mm. The relationship between temperature and wavelength is expressed by the Wien's displacement law. No contact or medium between the two bodies is needed for the energy transfer. Infrared heaters can be operated in vacuum or atmosphere. One classification of infrared heaters is by the wavelength bands of infrared emission. British astronomer Sir William Herschel is credited with the discovery of infrared in 1800. He made an instrument called a spectrometer to measure the magnitude of radiant power at different wavelengths. This instrument was made from three pieces. The first was a prism to catch the sunlight and direct and disperse the colors down onto a table, the second was a small panel of cardboard with a slit wide enough for only a single color to pass through it and finally, three mercury-in-glass thermometers. Through his experiment Hershel found that red light had the highest degree of temperature change in the light spectrum, however, infrared heating was not commonly used until World War II. During World War II infrared heating became more widely used and recognized. The main applications were in the metal finishing fields, particularly in the curing and drying of paints and lacquers on military equipment. Banks of lamp bulbs were used very successfully but by today's standards, the power intensities were very low. The technique offered much faster drying times than the fuel convection ovens of the time. Production bottlenecks were mitigated and military supplies to the armed forces were maintained. After World War II the adoption of infrared heating techniques continued but on a much slower basis. In the mid 1950s the motor vehicle industry began to show interest in the capabilities of infrared for paint curing and a number of production line infrared tunnels came into use. The most common filament material used for electrical infrared heaters is tungsten wire, which is coiled to provide more surface area. Low temperature alternatives for tungsten are carbon, or alloys of iron, chromium and aluminum (trademark and brand name Kanthal). While carbon filaments are more fickle to produce, they heat up much more quickly than a comparable medium-wave heater based on a FeCrAl filament. Industrial infrared heaters sometimes use a gold coating on the quartz tube that reflects the infrared radiation and directs it towards the product to be heated. Consequently the infrared radiation impinging on the product is virtually doubled. Gold is used because of its oxidation resistance and very high IR reflectivity of approximately 95%. Infrared heaters are commonly used in infrared modules (or emitter banks) combining several heaters to achieve larger heated areas. Infrared heaters are usually classified by the wavelength they emit. Near infrared (NIR) or short-wave infrared heaters operate at high filament temperatures above and when arranged in a field reach high power densities of some hundreds of kW/m2. Their peak wavelength is well below the absorption spectrum for water, making them unsuitable for many drying applications. They are well suited for heating of silica where a deep penetration is needed. Medium-wave and carbon (CIR) infrared heaters operate at filament temperatures of around . They reach maximum power densities of up to (medium-wave) and (CIR). Far infrared emitters (FIR) are typically used in the so-called low-temperature far infrared saunas. These constitute only the higher and more expensive range of the market of infrared sauna. Instead of using carbon, quartz or high watt ceramic emitters, which emit near and medium infrared radiation, heat and light, far infrared emitters use low watt ceramic plates that remain cold, while still emitting far infrared radiation. Metal wire heating elements first appeared in the 1920’s. These elements consist of wire made from chromel. Chromel is made from nickel and chrome and it is also known as nichrome. This wire was then coiled into a spiral and wrapped around a ceramic body. When heated to high temperatures it forms a protective layer of chromium-oxide which protects the wire from burning and corrosion, this also causes the element to glow. A heat lamp is an incandescent light bulb that is used for the principal purpose of creating heat. The spectrum of black body radiation emitted by the lamp is shifted to produce more infrared light. Many heat lamps include a red filter to minimize the amount of visible light emitted. Heat lamps often include an internal reflector. Heat lamps are commonly used in shower and bathrooms to warm bathers and in food-preparation areas of restaurants to keep food warm before serving. They are also commonly used for animal husbandry. Lights used for poultry are often called brooding lamps. Aside from young birds, other types of animals which can benefit from heat lamps include reptiles, amphibians, insects, arachnids, and the young of some mammals. The sockets used for heat lamps are usually ceramic because plastic sockets can melt or burn when exposed to the large amount of waste heat produced by the lamps, especially when operated in the "base up" position. The shroud or hood of the lamp is generally metal. There may be a wire guard over the front of the shroud, to prevent touching the hot surface of the bulb. Ordinary household white incandescent bulbs can also be used as heat lamps, but red and blue bulbs are sold for use in brood lamps and reptile lamps. 250-watt heat lamps are commonly packaged in the "R40" (5" reflector lamp) form factor with an intermediate screw base. Heat lamps can be used as a medical treatment to provide dry heat when other treatments are ineffective or impractical. Ceramic infrared heating elements are used in a diverse range of industrial processes where long wave infrared radiation is required. Their useful wavelength range is 2–10 µm. They are often used in the area of animal/pet healthcare too. The ceramic infrared heaters (emitters) are manufactured with three basic emitter faces: trough (concave), flat, and bulb or Edison screw element for normal installation via an E27 ceramic lamp holder. This heating technology is used in some expensive infrared saunas. It is also found in space heaters. These heaters use low watt density ceramic emitters (usually fairly big panels) which emit long wave infrared radiation. Because the heating elements are at a relatively low temperature, far-infrared heaters do not give emissions and smell from dust, dirt, formaldehyde, toxic fumes from paint-coating, etc. This has made this type of space heating very popular among people with severe allergies and multiple chemical sensitivity in Europe. Because far infrared technology does not heat the air of the room directly, it is important to maximize the exposure of available surfaces which then re-emit the warmth to provide an even all round ambient warmth. Halogen lamps are incandescent lamps filled with highly pressurized halogen gas. This gas is combined with a small amount of bromine or iodine which causes tungsten atoms to regenerate by lessening the evaporation of the filament. This leads to a much longer life of halogen lamps than incandescent lamps. Due to the high pressure and temperature halogen lamps produce, they are relatively small and made out of quartz glass because it has a hotter melting point than standard glass. Common uses for halogen lamps are table top heaters. Quartz infrared heating elements emit medium wave infrared energy and are particularly effective in systems where rapid heater response is required. Tubular infrared lamps in quartz bulbs produce infrared radiation in wavelengths of 1.5–8 µm. The enclosed filament operates at around , producing more shorter-wavelength radiation than open wire-coil sources. Developed in the 1950s at General Electric, these lamps produce about () and can be combined to radiate 500 watts per square foot (). To achieve even higher power densities, halogen lamps were used. Quartz infrared lamps are used in highly-polished reflectors to direct radiation in a uniform and concentrated pattern. Quartz heat lamps are used in food processing, chemical processing, paint drying, and thawing of frozen materials. They can also be used for comfort heating in cold areas, in incubators, and in other applications for heating, drying, and baking. During development of space re-entry vehicles, banks of quartz infrared lamps were used to test heat shield materials at power densities as high as 28 kilowatts/square foot (300 kW/m2). Most common designs consist of either a satin milky-white quartz glass tube or clear quartz with an electrically resistant element, usually a tungsten wire, or a thin coil of iron-chromium-aluminum alloy. The atmospheric air is removed and filled with inert gases such as nitrogen and argon then sealed. In quartz halogen lamps, a small amount of halogen gas is added to prolong the heater's operational life. Much of the infrared and visible energy released is caused by the direct heating of the quartz material, 97% of the near infrared is absorbed by the silica quartz glass tube causing the temperature of the tube wall to increase, this causes the silicon-oxygen bond to radiate far infrared rays.][ Quartz glass heating elements were originally designed for lighting applications, but when a lamp is at full power less than 5% of the emitted energy is in the visible spectrum.][ Quartz tungsten infrared heaters emit medium wave energy reaching operating temperatures of up to (medium wave) and (short wave). It reaches top temperatures within seconds. Peak wavelength emissions of approximately 1.6 µm (medium wave infrared) and 1 µm (short wave infrared). Carbon heaters are relatively recent and produce long wave far infrared heat, but not in large amounts. They need to be accurately specified for the spaces to be heated.
There are two basic types of infrared radiant heaters. Radiant tube gas-fired heaters used for industrial and commercial building space heating burn natural gas or propane to heat a steel emitter tube. Gas passing through a control valve flows through a cup burner or a venturi][. The combustion product gases heat the emitter tube. As the tube heats, radiant energy from the tube strikes floors and other objects in the area, warming them. This form of heating maintains warmth even when a large volume of cold air is suddenly introduced, such as in maintenance garages. They cannot however, combat a cold draught. The efficiency of an infrared heater is a rating of the total energy consumed by the heater compared to the amount of infrared energy generated. While there will always be some amount of convective heat generated through the process, any introduction of air motion across the heater will reduce its infrared conversion efficiency. With new untarnished reflectors, radiant tubes have a Downward Radiant Efficiency of about 60%. [The other 40% comprises unrecoverable upwards radiant + convective losses, and, flue losses.] In addition to the dangers of touching the hot bulb or element, high-intensity short-wave infrared radiation may cause indirect thermal burns when the skin is exposed for too long or the heater is positioned too close to the subject. Individuals exposed to large amounts of infrared radiation (like Glass blowers and arc welders) over an extended period of time may develop depigmentation of the iris and opacity of the aqueous humor, so exposure should be moderated.
Electrically-heated infrared heaters radiate up to 86% of their input as radiant energy. Nearly all the electrical energy input is converted into infrared radiant heat in the filament and directed onto the product by reflectors. Some energy is lost due to conduction or convection. For practical applications, the efficiency of the infrared heater depends on matching the emitted wavelength and the absorption spectrum of the material to be heated. For example, the absorption spectrum for water has its peak at around . This means that emission from medium-wave or carbon infrared heaters is much better absorbed by water and water-based coatings than NIR or short-wave infrared radiation. The same is true for many plastics like PVC or polyethylene. Their peak absorption is around . On the other hand, some metals absorb only in the short-wave range and show a strong reflectivity in the medium and far infrared. This makes a careful selection of the right infrared heater type important for energy efficiency in the heating process. Ceramic elements operate in the temperature of 300 to 700 °C (570 to 1,290 °F) producing infrared wavelengths in the to range. Most plastics and many other materials absorb infrared best in this range, which makes the ceramic heater most suited for this task.][ IR heaters are used in industrial manufacturing processes including curing of coatings, shrink tunnels, heating of plastic prior to forming, plastic welding, processing glass, and cooking. They are used when high temperatures are required, fast responses or temperature gradients are needed or products need to be heated in certain areas in a targeted way. Their application is difficult for objects with undercuts. They are also used to provide warmth to suckling animals as well as to captive animals in zoos or veterinary clinics, especially for lizards and other reptiles, and tropical animals such as birds.
Infrared lamps are electrical devices which emit infrared radiation. Infrared lamps have many uses, but are most commonly used in communication and heating. Less common uses include illumination for use with night vision devices. Infrared heating uses infrared lamps, commonly called heat lamps to transmit infrared radiation to the body that is being heated. When large bodies or bodies with a large surface area need to be heated, infrared lamps are often used in banks. Infrared heat lamps are commonly incandescent bulbs which are able to produce infrared radiation. Infrared lamps have many industrial applications including curing coatings and preparing plastic for forming, commercial applications such as cooking and browning food, and personal applications such as providing heat (especially in bathrooms and for pets). IR data transmission is also employed in short-range communication among computer peripherals and personal digital assistants. These devices usually conform to standards published by IrDA, the Infrared Data Association. Remote controls and IrDA devices use infrared light-emitting diodes (LEDs) to emit infrared radiation which is focused by a plastic lens into a narrow beam. The beam is modulated, i.e. switched on and off, to encode the data. The receiver uses a silicon photodiode to convert the infrared radiation to an electric current. It responds only to the rapidly pulsing signal created by the transmitter, and filters out slowly changing infrared radiation from ambient light. Infrared communications are useful for indoor use in areas of high population density. IR does not penetrate walls and so does not interfere with other devices in adjoining rooms. Infrared is the most common way for remote controls to command appliances.
An infrared countermeasure (IRCM) is a device designed to protect aircraft from infrared homing ("heat seeking") missiles by confusing the missiles' infrared guidance system so that they will miss their target. First deployed during the Vietnam War, they have been enhanced over the years to be lighter, more portable, and more reliable, but the basic principle is the same.][ Infrared missile seekers of the first generation typically used a spinning reticle with a pattern on it that modulates infrared energy before it falls on a detector (A mode of operation called Spin scan). The patterns used differ from seeker to seeker, but the principle is the same. By modulating the signal, the steering logic can tell where the infrared source of energy is relative to the missile direction of flight. In more recent designs the missile optics will rotate and the rotating image is projected on a stationary reticle (a mode called Conical scan) or stationary set of detectors which generates a pulsed signal which is processed by the tracking logic. Most shoulder launched (MANPADS) systems use this type of seeker, as do many air defense systems and air to air missiles (for example the AIM-9L). Infrared seekers are designed to track a strong source of infrared radiation (usually a jet engine in modern military aircraft). IRCM systems are based on modulated source of infrared radiation with a higher intensity than the target. When this modulated radiation is seen by a missile seeker, it overwhelms the modulated signal from the aircraft and provides incorrect steering cues to the missile. The missile will begin to deviate (wobble) from the target, rapidly breaking lock. Once an infrared seeker breaks lock (they typically have a field of view of 1 - 2 degrees), they rarely reacquire the target. By using flares, the target can cause the confused seeker to lock onto a new infrared source that is rapidly moving away from the true target. The modulated radiation from the IRCM generates a false tracking command in the seeker tracking logic. The effectiveness of the IRCM is determined by the ratio of jamming intensity to the target (or signal) intensity. This ratio is usually called the J/S ratio. Another important factor is the modulation frequencies which should be close to the actual missile frequencies. For spin scan missiles the required J/S is quite low but for newer missiles the required J/S is quite high requiring a directional source of radiation (DIRCM). One of the drawbacks of standard IRCM systems is that they broadcast a bright source of infrared. If the modulation of the signal is not effective against a particular seeker system, the IRCM will enhance the ability of the missile to track the aircraft. The aircrews typically brief about potential threats and choose an IRCM modulation that will be effective against likely threats.][ DIRCM, or Directional Infrared Countermeasures, avoid this potential drawback by mounting the energy source on a movable turret (much like a FLIR turret). They only operate when cued by a missile warning system of a missile launch, and use the missile plume to accurately aim at the missile seeker. The modulated signal can then be directed at the seeker, and the modulation scheme can be cycled to try to defeat a variety of seekers. Countermeasure success depend on threat's tracking techniques and requires threats' analysis capabilities. Defeating advanced tracking systems requires a higher level of DIRCM power. Issues of Laser Safety are also taken into account. Israel has announced a program to develop a system called Multi Spectral Infrared Countermeasure (MUSIC) that will similarly use active lasers instead of flares to protect civilian aircraft against MANPADs. The US Army is deploying a similar system to protect its helicopters. Department of the Navy Large Aircraft Countermeasures (DoN LAIRCM) by Northrop Grumman provides infrared threat protection for U.S. Marine Corps CH-53E, CH-46E and CH-53D platforms. BAE Systems' AN/ALQ-212 advanced threat infrared countermeasures (ATIRCM) - part of a directable infrared countermeasures suite - is fielded on U.S. Army CH-47 Chinook helicopters. The suite provides protection against an array of threats, including all infrared threat bands. The AN/ALQ-212 incorporates one or more infrared jam heads to counter multiple missile attacks. At IDEX 2013, Finmeccanica Company, Selex ES launched its Miysis DIRCM, suitable for light aircraft, smaller helicopters and UAVs. CIRCM will be a laser based IR countermeasure against current and future IR threat systems for the US Army rotorcraft and fixed wing platforms and US Navy and US Air Force rotorcraft platforms. Currently, systems by BAE Systems, ITT Defense and Information Solutions, Northrop Grumman and Raytheon are under consideration. Flares create infrared targets with a much stronger signature than the aircraft's engines. The flares provide false targets that cause the missile to make incorrect steering decisions. The missile will rapidly break off a target lock-on. Typical IRCM systems are the:
Infrared cut-off filters, sometimes called IR filters or heat-absorbing filters, are designed to reflect or block mid-infrared wavelengths while passing visible light. They are often used in devices with bright incandescent light bulbs (such as slide and overhead projectors) to prevent unwanted heating. There are also filters which are used in solid state (CCD or CMOS) video cameras to block IR due to the high sensitivity of many camera sensors to near-infrared light. These filters typically have a blue hue to them as they also sometimes block some of the light from the longer red wavelengths. In contrast to the naming convention of optical filters where the name of the filter denotes the wavelengths that are blocked, and in line with the convention for air filters and oil filters, photographic filters are named for the color of light they pass. Thus a blue filter makes the picture look blue. A black filter marginally allows more light in the blue wavelength to pass resulting in a slight shift of the color temperature of the photo to a cooler color. Because of this, the term "IR filters" is commonly used to refer to filters that pass infrared light while completely blocking other wavelengths. However, in some applications the term "IR filter" still can be used as a synonym of infrared cut-off filter. Unlike the eye, sensors based on silicon (including CCDs and CMOS sensors) have sensitivities extending into the near-infrared. Such sensors may extend to 1000 nm. Digital cameras are usually equipped with IR-blocking filters to prevent unnatural-looking images. IR-transmitting (passing) filters, or removal of factory IR-blocking filters, are commonly used in infrared photography to pass infrared light and block visible and ultraviolet light. Such filters appear black to the eye, but are transparent when viewed with an IR sensitive device. Since the dyes in processed film block various part of visible light but are all fairly transparent to infrared, dark black sections of any processed film (where all visible colors are blocked) pass only infrared light and are commonly used (layering one over another if necessary for better visual light filtering) as a cheap alternative to expensive glass-backed filters. Such filters can be used both over color camera lenses, and to filter visible light from IR illumination sources. Such filter stock is most easily made available most simply by having any commercial color film developed directly from the new package, without moving or exposing it at all. (Some special communication may be necessary in such submission, to ensure that all of the "black" negative or positive film thus produced is indeed returned, and that there is no need to print the color-negative results on photographic paper). In the same way, visually opaque "black" color-positive film emulsions mounted in cardboard, as for routine slide projection, provide inexpensive cardboard-mounted infrared filters. Film sizes larger than 35 mm may be handled in the same way for larger filter production. For astrophotography, many photogenic targets (such as emission nebulae) are bright in the far red and near infrared. Removal of factory filters increases sensitivity to such targets, and may also increase sharpness, as such filters may also include antialiasing filters.
Infrared vision is the capability of biological or artificial systems to detect infrared radiation. The terms thermal vision and thermal imaging, are also commonly used in this context since infrared emissions from a body are directly related to their temperature: hotter objects emit more energy in the infrared spectrum than colder ones. The human body, as well as many moving or static objects of military or civil interest, is normally warmer than the surrounding environment. Since hotter objects emit more infrared energy than colder ones, it is relatively easy to identify them with an infrared detector, day or night. Hence, the term night vision is also used (sometimes misused) in the place of "infrared vision", since one of the original purposes in developing this kind of systems was to locate enemy targets at night. However, night vision concerns the ability to see in the dark although not necessarily in the infrared spectrum. In fact, night vision equipment can be manufactured using one of two technologies: light intensifiers or infrared vision. The former technology uses a photocathode to convert light (in the visible or near infrared portions of the electromagnetic spectrum) to electrons, amplify the signal and transform it back to photons. Infrared vision on the other hand, uses an infrared detector working at mid or long wavelengths (invisible to the human eye) to capture the heat emitted by an object. The entire electromagnetic spectrum highlighting the infrared part located between the visible and the radio waves, is depicted in the figure. The IR spectrum can be subdivided into 5 regions, although this definition is somehow arbitrary and it differs from one author to another. The subdivision presented here is based on a combination of the atmospheric transmittance windows, i.e. the wavelengths regions in which infrared radiation is better transmitted through the atmosphere, the detector materials used to build the infrared sensors and the main applications. In this way, the Near Infrared (NIR) band is mostly used in fiber optic telecommunication systems since silica (SiO2) provides a low attenuation losses medium for the infrared, whilst the Short Wave Infrared (SWIR) band allows to work on long-distance telecommunications (remote sensing) using a combinations of detector materials. The Medium Wavelength Infrared (MWIR) and the Long Wavelength Infrared (LWIR) bands find applications in Infrared Thermography for military or civil applications, e.g. target signature identification, surveillance, NonDestructive Evaluation, etc. The Very Long Wavelength Infrared (VLIR) band is used in spectroscopy and astronomy. The MWIR band is preferred when inspecting high temperature objects and the LWIR band when working with near room temperature objects. Other important criteria for band selection are: the operating distance, indoor-outdoor operation, temperature and emissivity of the bodies of interest. For instance, long wavelengths (LWIR) are preferred for outdoor operation since they are less affected by radiation from the Sun. LWIR cameras are typically uncooled systems using a microbolometer Focal Plane Arrays commonly used in industrial IR applications, although cooled LWIR cameras using Mercury Cadmium Tellurium (MCT) detectors exists as well. On the contrary, the majority of the MWIR cameras require cooling, using either liquid nitrogen or a Stirling cycle cooler. Cooling to approximately −196 °C (77 K), offer excellent thermal resolution, but it might restrict the span of applications to controlled environments. Infrared vision is used extensively by the military for night vision, navigation, surveillance and targeting. For years, it developed slowly due to the high cost of the equipment and the low quality of available images. Since the development of the first commercial infrared cameras in the second half of 1960s, however, the availability of new generations of infrared cameras coupled with growing computer power is providing exciting new civilian (and military) applications, to name only a few: buildings and infrastructure, works of art, aerospace components and processes, maintenance, defect detection and characterization, law enforcement, surveillance and public services, medical and veterinary thermal imaging. The electronic technique that uses infrared vision to "see" thermal energy, to monitor temperatures and thermal patterns is called infrared thermography.
Infrared and thermal testing is one of many Nondestructive testing techniques designated by the American Society for Nondestructive Testing (ASNT). Infrared Thermography is the science of measuring and mapping surface temperatures. "Infrared thermography, a nondestructive, remote sensing technique, has proved to be an effective, convenient, and economical method of testing concrete. It can detect internal voids, delaminations, and cracks in concrete structures such as bridge decks, highway pavements, garage floors, parking lot pavements, and building walls. As a testing technique, some of its most important qualities are that (1) it is accurate; (2) it is repeatable; (3) it need not inconvenience the public; and (4) it is economical." An infrared thermographic scanning system can measure and view temperature patterns based upon temperature differences as small as a few hundredths of a degree Celsius. Infrared thermographic testing may be performed during day or night, depending on environmental conditions and the desired results.
All objects emit electromagnetic radiation of a wavelength dependent on the object’s temperature. The frequency of the radiation is inversely proportional to the temperature. In infrared thermography, the radiation is detected and measured with infrared imagers (radiometers). The imagers contain an infrared detector that converts the emitting radiation into electrical signals that are displayed on a color or black & white computer display monitor.
A typical application for regularly available IR Thermographic equipment is looking for “hot spots” in electrical equipment, which illustrates high resistance areas in electrical circuits. These “hot spots” are usually measured in the range of 40 °C to 150 °C (70 to 270 °F) above ambient temperatures. But, when engineers use its patented proprietary systems to locate subsurface targets such as Underground Storage Tanks (USTs), pipelines, pipeline leaks and their plumes, and in this project, hidden tunnels, we are looking for temperature patterns typically in the range of 0.01 °C to 1 °C above or below ambient temperatures.
After the thermal data is processed, it can be displayed on a monitor in multiple shades of gray scale or color. The colors displayed on the thermogram are arbitrarily set by the Thermographer to best illustrate the infrared data being analyzed.
In this roofing investigation application, infrared thermographic data was collected during daytime hours, on both sunny and rainy days. This data collection time allowed for solar heating of the roof, and any entrapped water within the roofing system, during the daylight hours. IR data was observed until the roof had sufficiently warmed to allow detection of the entrapped wet areas because of their ability to collect and store more heat than the dry insulated areas. The wet areas would also transfer the heat at a faster rate than the dry insulated roof areas. At this point in time, the wet areas showed up as warmer roof surface temperatures than the surrounding dry background areas of the roof. During the rainy day, with minimum solar loading, any entrapped leak plumes would become evident because of their cooler temperature as compared to the dry roof areas An infrared thermographic scanning system measures surface temperatures only. But the surface temperatures that are measured on the surface of the ground, above a buried pipeline, are, to a great extent, dependent upon the subsurface conditions. The subsurface configuration effects are based upon the theory that energy cannot be stopped from flowing from warmer to cooler areas, it can only be slowed down by the insulating effects of the material through which it is flowing. Various types of construction materials have different insulating abilities. In addition, differing types of pipeline defects have different insulating values. There are three ways of transferring energy: 1) conduction; 2) convection; and 3) radiation. Good solid backfill should have the least resistance to conduction of energy and the convection gas radiation effects should be negligible. The various types of problems associated with soil erosion and poor backfill surrounding buried pipelines increase the insulating ability of the soil, by reducing the energy conduction properties, without substantially increasing the convection effects. This is because dead air spaces do not allow the formation of convection currents. In order to have an energy flow, there must be an energy source. Since buried pipeline testing can involve large areas, the heat source has to be low cost and able to give the ground surface above the pipeline an even distribution of heat. The sun fulfills both of these requirements. The ground surface reacts, storing or transmitting the energy received. For pipelines carrying fluids at temperatures above or below the ambient ground temperatures (i.e., steam, oil, liquefied gases, or chemicals), an alternative is to use the heat sinking ability of the earth to draw heat from the pipeline under test. The crucial point to remember is that the energy must be flowing through the ground and fluids. Ground cover must be evaluated for temperature differentials (i.e., anomalies such as high grass or surface debris), as to how it may affect the surface condition of the test area. Of the three methods of energy transfer, radiation is the method that has the most profound effect upon the ability of the surface to transfer energy. The ability of a material to radiate energy is measured by the emissivity of the material. This is defined as the ability of the material to release energy as compared to a perfect blackbody radiator. This is strictly a surface property. It normally exhibits itself in higher values for rough surfaces and lower values for smooth surfaces. For example, rough concrete may have an emissivity of 0.95 while a shiny piece of tinfoil may have an emissivity of only 0.05. In practical terms, this means that when looking at large areas of ground cover, the engineer in charge of testing must be aware of differing surface textures caused by such things as broom roughed spots, tire rubber tracks, oil spots, loose sand and dirt on the surface and the height of grassy areas.
A thermographic camera or infrared camera is a device that forms an image using infrared radiation, similar to a common camera that forms an image using visible light. Instead of the 450–750 nanometer range of the visible light camera, infrared cameras operate in wavelengths as long as 14,000 nm (14 µm). Infrared was discovered by Sir William Herschel as a form of radiation beyond red light. These “infrared rays” (infra is the Latin prefix for “below”) were used mainly for thermal measurement. There are four basic laws of IR radiation: Kirchhoff's law of thermal radiation, Stefan-Boltzmann law, Planck’s law, and Wien’s displacement law. The development of detectors’ was mainly focused on the use of thermometer and bolometers until World War I. Leopoldo Nobili fabricated the first thermocouple in 1829, which paved the way for Macedonio Melloni to show that a person 10 meters away could be detected with his multielement thermopile. The bolometer was invented in 1878 by Langley. It had the capability to detect radiation from a cow from 400 meters away, and was sensitive to differences in temperature of one hundred thousandth of a degree Celsius. The first advanced application of IR technology in the civil section may have been a device to detect the presence of icebergs and steamships using a mirror and thermopile, patented in 1913. This was soon outdone by the first true IR iceberg detector, which did not use thermopiles, patented in 1914 by R.D. Parker. This was followed up by G.A. Barker’s proposal to use the IR system to detect forest fires in 1934. The technique was not truly industrialized until it was used in the analysis of heating uniformity in hot steel strips in 1935. The first true thermographic cameras began with the development of the first infrared line scanner. This was created by the US military and Texas Instruments in 1947 and took one hour to produce a single image. While several approaches were investigated to improve the speed and accuracy of the technology, one of the most crucial factors that needed to be considered dealt with scanning an image, which the AGA company was able to commercialize using a cooled photoconductor. This work was further developed at the Royal Signals and Radar Establishment in the UK when they discovered mercury cadmium telluride could be used as a conductor that required much less cooling. Honeywell in the United States also developed arrays of detectors which could cool at a lower temperature, but they scanned mechanically. This method had several disadvantages which could be overcome using an electronically scanning system. In 1969 Michael Francis Tompsett at English Electric Valve Company in the UK patented a camera which scanned pyro-electronically and which reached a high level of performance after several other breakthroughs throughout the 1970s. Tompsett also proposed an idea for solid-state thermal-imaging arrays, which eventually led to modern hydridized single-crystal-slice imaging devices. One of the most important areas of development for security systems was for the ability to intelligently evaluate a signal, as well as warning for a threats’ presence. Under the encouragement of the United States Strategic Defense Initiative, “Smart Sensors” began to appear. These are sensors that could integrate sensing, signal extraction, processing, and comprehension. There are two main types of Smart Sensors. One, similar to what are called “vision chips” when used in the visible range, allow for preprocessing using Smart Sensing techniques due to the increase in growth of integrated microcircuitry. The other technology is more oriented to a specific use and fulfills its preprocessing goal through its design and structure. Towards the end of the 1990s the use of infrared was moving towards civil use. There was a dramatic lowering of costs for uncooled arrays, which along with the large increase in developments lead to a dual way use market between civil and military. These uses include environmental control, building/art analysis, medical functional diagnostics, and car guidance and collision avoidance systems. Infrared energy is just one part of the electromagnetic spectrum, which encompasses radiation from gamma rays, x-rays, ultra violet, a thin region of visible light, infrared, terahertz waves, microwaves, and radio waves. These are all related and differentiated in the length of their wave (wavelength). All objects emit a certain amount of black body radiation as a function of their temperatures. Generally speaking, the higher an object's temperature is, the more infrared radiation is emitted as black-body radiation. A special camera can detect this radiation in a way similar to the way an ordinary camera detects visible light. It works even in total darkness because ambient light level does not matter. This makes it useful for rescue operations in smoke-filled buildings and underground. Images from infrared cameras tend to have a single color channel because the cameras generally use a sensor that does not distinguish different wavelengths of infrared radiation. Color cameras require a more complex construction to differentiate wavelength and color has less meaning outside of the normal visible spectrum because the differing wavelengths do not map uniformly into the system of color vision used by humans. Sometimes these monochromatic images are displayed in pseudo-color, where changes in color are used rather than changes in intensity to display changes in the signal. This is useful because although humans have much greater dynamic range in intensity detection than color overall, the ability to see fine intensity differences in bright areas is fairly limited. This technique is called density slicing. For use in temperature measurement the brightest (warmest) parts of the image are customarily colored white, intermediate temperatures reds and yellows, and the dimmest (coolest) parts black. A scale should be shown next to a false color image to relate colors to temperatures. Their resolution is considerably lower than of optical cameras, mostly only 160x120 or 320x240 pixels. Thermographic cameras are much more expensive than their visible-spectrum counterparts, and higher-end models are often deemed as dual-use and export-restricted. In uncooled detectors the temperature differences at the sensor pixels are minute; a 1 °C difference at the scene induces just a 0.03 °C difference at the sensor. The pixel response time is also fairly slow, at the range of tens of milliseconds. Thermography finds many other uses. For example, firefighters use it to see through smoke, find persons, and localize hotspots of fires. With thermal imaging, power line maintenance technicians locate overheating joints and parts, a telltale sign of their failure, to eliminate potential hazards. Where thermal insulation becomes faulty, building construction technicians can see heat leaks to improve the efficiencies of cooling or heating air-conditioning. Thermal imaging cameras are also installed in some luxury cars to aid the driver, the first being the 2000 Cadillac DeVille. Some physiological activities, particularly responses, in human beings and other warm-blooded animals can also be monitored with thermographic imaging. Cooled infrared cameras can be found at major astronomy research telescopes, even those that are not infrared telescopes. Thermographic cameras can be broadly divided into two types: those with cooled infrared image detectors and those with uncooled detectors. Cooled detectors are typically contained in a vacuum-sealed case or Dewar and cryogenically cooled. The cooling is necessary for the operation of the semiconductor materials used. Typical operating temperatures range from 4 K to just below room temperature, depending on the detector technology. Most modern cooled detectors operate in the 60 K to 100 K range, depending on type and performance level. Without cooling, these sensors (which detect and convert light in much the same way as common digital cameras, but are made of different materials) would be 'blinded' or flooded by their own radiation. The drawbacks of cooled infrared cameras are that they are expensive both to produce and to run. Cooling is power-hungry and time-consuming. The camera may need several minutes to cool down before it can begin working. The most commonly used cooling systems are rotary Stirling engine cryocoolers. Although the cooling apparatus is comparatively bulky and expensive, cooled infrared cameras provide superior image quality compared to uncooled ones. Additionally, the greater sensitivity of cooled cameras also allow the use of higher F-number lenses, making high performance long focal length lenses both smaller and cheaper for cooled detectors. An alternative to Stirling engine coolers is to use gases bottled at high pressure, nitrogen being a common choice. The pressurised gas is expanded via a micro-sized orifice and passed over a miniature heat exchanger resulting in regenerative cooling via the Joule–Thomson effect. For such systems the supply of pressurized gas is a logistical concern for field use. Materials used for cooled infrared detection include photodetectors based on a wide range of narrow gap semiconductors including: Infrared photodetectors can be created with structures of high band gap semiconductors such as in Quantum well infrared photodetectors. A number of superconducting and non-superconducting cooled bolometer technologies exist. In principle, superconducting tunneling junction devices could be used as infrared sensors because of their very narrow gap. Small arrays have been demonstrated. Their wide range use is difficult because their high sensitivity requires careful shielding from the background radiation. Superconducting detectors offer extreme sensitivity, with some able to register individual photons. For example ESA's Superconducting camera (SCAM). However, they are not in regular use outside of scientific research. Uncooled thermal cameras use a sensor operating at ambient temperature, or a sensor stabilized at a temperature close to ambient using small temperature control elements. Modern uncooled detectors all use sensors that work by the change of resistance, voltage or current when heated by infrared radiation. These changes are then measured and compared to the values at the operating temperature of the sensor. Uncooled infrared sensors can be stabilized to an operating temperature to reduce image noise, but they are not cooled to low temperatures and do not require bulky, expensive cryogenic coolers. This makes infrared cameras smaller and less costly. However, their resolution and image quality tend to be lower than cooled detectors. This is due to difference in their fabrication processes, limited by currently available technology. Uncooled detectors are mostly based on pyroelectric and ferroelectric materials or microbolometer technology. The material are used to form pixels with highly temperature-dependent properties, which are thermally insulated from the environment and read electronically. Ferroelectric detectors operate close to phase transition temperature of the sensor material; the pixel temperature is read as the highly temperature-dependent polarization charge. The achieved NETD of ferroelectric detectors with f/1 optics and 320x240 sensors is 70-80 mK. A possible sensor assembly consists of barium strontium titanate bump-bonded by polyimide thermally insulated connection. Silicon microbolometers can reach NETD down to 20 mK. They consist of a thin film vanadium(V) oxide sensing element suspended on silicon nitride bridge above the silicon-based scanning electronics. The electric resistance of the sensing element is measured once per frame. Current improvements of uncooled focal plane arrays (UFPA) are focused primarily on higher sensitivity and pixel density. In 2013 DARPA announced a five-micron LWIR camera that uses a 1280 x 720 focal plane array (FPA). Some of the materials used for the sensor arrays are e.g.: [2] Originally developed for military use during the Korean War, thermographic cameras have slowly migrated into other fields as varied as medicine and archeology. More recently, the lowering of prices have helped fuel the adoption of infrared viewing technology. Advanced optics and sophisticated software interfaces continue to enhance the versatility of IR cameras. Some specification parameters of an infrared camera system are:
infrared energy heat electronic signal infrared energy non-contact device Surveillance Infrared

A thermographic camera or infrared camera is a device that forms an image using infrared radiation, similar to a common camera that forms an image using visible light. Instead of the 450–750 nanometer range of the visible light camera, infrared cameras operate in wavelengths as long as 14,000 nm (14 µm).


A passive infrared sensor (PIR sensor) is an electronic sensor that measures infrared (IR) light radiating from objects in its field of view. They are most often used in PIR-based motion detectors.

An infrared thermometer is a thermometer which infers temperature from a portion of the thermal radiation sometimes called blackbody radiation emitted by the object being measured. They are sometimes called laser thermometers if a laser is used to help aim the thermometer, or non-contact thermometers or temperature guns, to describe the device's ability to measure temperature from a distance. By knowing the amount of infrared energy emitted by the object and its emissivity, the object's temperature can often be determined. Infrared thermometers are a subset of devices known as "thermal radiation thermometers".

Sometimes, especially near ambient temperatures, false readings will be obtained indicating incorrect temperature. This is most often due to other thermal radiation reflected from the object being measured, but having its source elsewhere, like a hotter wall or other object nearby - even the person holding the thermometer can be an error source in some cases. It can also be due to an incorrect emissivity on the emissivity control or a combination of the two possibilities.

Electromagnetic radiation (EM radiation or EMR) is one of the fundamental phenomena of electromagnetism, behaving as waves propagating through space, and also as photon particles traveling through space, carrying radiant energy. In a vacuum, it propagates at a characteristic speed, the speed of light, normally in straight lines. EMR is emitted and absorbed by charged particles. As an electromagnetic wave, it has both electric and magnetic field components, which oscillate in a fixed relationship to one another, perpendicular to each other and perpendicular to the direction of energy and wave propagation.

EMR is characterized by the frequency or wavelength of its wave. The electromagnetic spectrum, in order of increasing frequency and decreasing wavelength, consists of radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays. The eyes of various organisms sense a somewhat variable but relatively small range of frequencies of EMR called the visible spectrum or light. Higher frequencies correspond to proportionately more energy carried by each photon; for instance, a single gamma ray photon carries far more energy than a single photon of visible light.

A thermographic camera or infrared camera is a device that forms an image using infrared radiation, similar to a common camera that forms an image using visible light. Instead of the 450–750 nanometer range of the visible light camera, infrared cameras operate in wavelengths as long as 14,000 nm (14 µm).

The electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation. The "electromagnetic spectrum" of an object has a different meaning, and is instead the characteristic distribution of electromagnetic radiation emitted or absorbed by that particular object.

The electromagnetic spectrum extends from below the low frequencies used for modern radio communication to gamma radiation at the short-wavelength (high-frequency) end, thereby covering wavelengths from thousands of kilometers down to a fraction of the size of an atom. The limit for long wavelengths is the size of the universe itself, while it is thought that the short wavelength limit is in the vicinity of the Planck length, although in principle the spectrum is infinite and continuous.

Health Medical Pharma Technology Internet Health Medical Pharma Technology Internet

Related Websites:

Terms of service | About