Question:

How do valence electrons effect the chemical properties of an atom?

Answer:

The less elec in the valance layer the more reactive. if there are eight electrons in the outer layer it is considerd nobal and does not react.

More Info:

Chemistry
Chemical bonding

A chemical bond is an attraction between atoms that allows the formation of chemical substances that contain two or more atoms. The bond is caused by the electrostatic force of attraction between opposite charges, either between electrons and nuclei, or as the result of a dipole attraction. The strength of chemical bonds varies considerably; there are "strong bonds" such as covalent or ionic bonds and "weak bonds" such as dipole–dipole interactions, the London dispersion force and hydrogen bonding.

Since opposite charges attract via a simple electromagnetic force, the negatively charged electrons that are orbiting the nucleus and the positively charged protons in the nucleus attract each other. An electron positioned between two nuclei will be attracted to both of them, and the nuclei will be attracted toward electrons in this position. This attraction constitutes the chemical bond. Due to the matter wave nature of electrons and their smaller mass, they must occupy a much larger amount of volume compared with the nuclei, and this volume occupied by the electrons keeps the atomic nuclei relatively far apart, as compared with the size of the nuclei themselves. This phenomenon limits the distance between nuclei and atoms in a bond.

Physics
Valence electron

In chemistry, a valence electron is an electron that is associated with an atom, and that can participate in the formation of a chemical bond; in a single covalent bond, both atoms in the bond contribute one valence electron in order to form a shared pair. The presence of valence electrons can determine the element's chemical properties and whether it may bond with other elements: For a main group element, a valence electron can only be in the outermost electron shell. In a transition metal, a valence electron can also be in an inner shell.

An atom with a closed shell of valence electrons (corresponding to an electron configuration s2p6) tends to be chemically inert. An atom with one or two valence electrons more than a closed shell is highly reactive, because the extra valence electrons are easily removed to form a positive ion. An atom with one or two valence electrons fewer than a closed shell is also highly reactive, because of a tendency either to gain the missing valence electrons (thereby forming a negative ion), or to share valence electrons (thereby forming a covalent bond).

Electron Valence
Electron shell

In chemistry and atomic physics, an electron shell, also called a principle energy level may be thought of as an orbit followed by electrons around an atom's nucleus. The closest shell to the nucleus is called the "1 shell" (also called "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on farther and farther from the nucleus. The shells correspond with the principal quantum numbers (1, 2, 3, 4...) or are labeled alphabetically with letters used in the X-ray notation (K, L, M, …).

Each shell can contain only a fixed number of electrons: The 1st shell can hold up to two electrons, the 2nd shell can hold up to eight (2 + 6) electrons, the 3rd shell can hold up to 18 (2 + 6 + 10), and the 4th shell can hold up to 32 (2 + 6 + 10 + 14) and so on. Since electrons are electrically attracted to the nucleus, an atom's electrons will generally occupy outer shells only if the more inner shells have already been completely filled by other electrons. However, this is not a strict requirement: Atoms may have two or even three incomplete outer shells. (See Madelung rule for more details.) For an explanation of why electrons exist in these shells see electron configuration.


Lewis structure

Lewis structures (also known as Lewis dot diagrams, electron dot diagrams, "Lewis dot formulas", Lewis dot structures, and electron dot structures) are diagrams that show the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule. A Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. The Lewis structure was named after Gilbert N. Lewis, who introduced it in his 1916 article The Atom and the Molecule. They are similar to electron dot diagrams in that the valence electrons in lone pairs are represented as dots, but they also contain lines to represent shared pairs in a chemical bond (single, double, triple, etc.).

Lewis structures show each atom and its position in the structure of the molecule using its chemical symbol. Lines are drawn between atoms that are bonded to one another (pairs of dots can be used instead of lines). Excess electrons that form lone pairs are represented as pairs of dots, and are placed next to the atoms.

Technology Internet
chemical properties

A chemical property is any of a material's properties that becomes evident during a chemical reaction; that is, any quality that can be established only by changing a substance's chemical identity. Simply speaking, chemical properties cannot be determined just by viewing or touching the substance; the substance's internal structure must be affected for its chemical properties to be investigated. However a catalytic property would also be a chemical property.

Chemical properties can be contrasted with physical properties, which can be discerned without changing the substance's structure. However, for many properties within the scope of physical chemistry, and other disciplines at the boundary between chemistry and physics, the distinction may be a matter of researcher's perspective. Material properties, both physical and chemical, can be viewed as supervenient; i.e., secondary to the underlying reality. Several layers of superveniency]clarification needed[ are possible.

News:


Related Websites:


Terms of service | About
17