How do lipids an carbohydrates differ in ATP production?


Lipids store the most energy. Fats store about 80% of the energy in your body, and when they are broken down they give the most energy. Carbohydrates make about 32 molecules of ATP, and dare used more commonly to make the ATP.

More Info:

ATP Biology Nutrition Metabolism Fat
Cellular respiration

Cellular respiration is the set of the metabolic reactions and processes that take place in the cells of organisms to convert biochemical energy from nutrients into adenosine triphosphate (ATP), and then release waste products. The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy in the process as weak so-called "high-energy" bonds are replaced by stronger bonds in the products. Respiration is one of the key ways a cell gains useful energy to fuel cellular activity. Cellular respiration is considered an exothermic redox reaction. The overall reaction is broken into many smaller ones when it occurs in the body, most of which are redox reactions themselves. Although technically, cellular respiration is a combustion reaction, it clearly does not resemble one when it occurs in a living cell. This difference is because it occurs in many separate steps. While the overall reaction is a combustion reaction, no single reaction that comprises it is a combustion reaction.

Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and a common oxidizing agent (electron acceptor) is molecular oxygen (O2). The energy stored in ATP (its third phosphate group is weakly bonded to the rest of the molecule and is cheaply broken allowing stronger bonds to form, thereby transferring energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transportation of molecules across cell membranes.

Exercise physiology

Exercise physiology is the study of the acute responses and chronic adaptations to a wide range of physical exercise conditions. In addition, many exercise physiologists study the effect of exercise on pathology, and the mechanisms by which exercise can reduce or reverse disease progression. Accreditation programs exist with professional bodies in most developed countries, ensuring the quality and consistency of education. In Canada, one may obtain the professional certification title - Certified Exercise Physiologist for those working with clients (both clinical and non clinical) in the health and fitness industry.

An exercise physiologist's area of study may include but is not limited to biochemistry, bioenergetics, cardiopulmonary function, hematology, biomechanics, skeletal muscle physiology, neuroendocrine function, and central and peripheral nervous system function. Furthermore, exercise physiologists range from basic scientists, to clinical researchers, to clinicians, to sports trainers.

Lipid Carbohydrate

Food energy is energy that animals (including humans) derive from their food, through the process of cellular respiration, the process of joining oxygen with the molecules of food (aerobic respiration) or of reorganizing the atoms within the molecules for anaerobic respiration.

Humans and other animals need a minimum intake of food energy to sustain their metabolism and drive their muscles. Foods are composed chiefly of carbohydrates, fats, proteins, water, vitamins, and minerals. Carbohydrates, fats, proteins, and water represent virtually all the weight of food, with vitamins and minerals making up only a small percentage of the weight. Carbohydrates, fats, and proteins comprise ninety percent of the dry weight of foods. Food energy is derived from carbohydrates, fats and proteins as well as organic acids, polyols, and ethanol present in the diet. Some diet components that provide little or no food energy, such as water, minerals, vitamins and fiber, may still be necessary to health and survival for other reasons. Water contains very stable chemical bonds and so cannot be oxidized to provide energy. Vitamins and minerals are present in very small amounts (in milli- or micrograms) and also cannot be used for energy. Fiber, a type of carbohydrate, cannot be completely digested by the human body. Ruminants can extract food energy from the respiration of cellulose thanks to bacteria in their rumens.

Adenosine triphosphate

[(2''R'',3''S'',4''R'',5''R'')-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl(hydroxyphosphonooxyphosphoryl)hydrogen phosphate

adenosine 5'-(tetrahydrogen triphosphate)

Carbohydrate metabolism

Carbohydrate metabolism denotes the various biochemical processes responsible for the formation, breakdown and interconversion of carbohydrates in living organisms.

The most important carbohydrate is glucose, a simple sugar (monosaccharide) that is metabolized by nearly all known organisms. Glucose and other carbohydrates are part of a wide variety of metabolic pathways across species: plants synthesize carbohydrates from carbon dioxide and water by photosynthesis storing the absorbed energy internally, often in the form of starch or lipids. Plant components are consumed by animals and fungi, and used as fuel for cellular respiration. Oxidation of one gram of carbohydrate yields approximately 4 kcal of energy and from lipids about 9 kcal. Energy obtained from metabolism (e.g. oxidation of glucose) is usually stored temporarily within cells in the form of ATP. Organisms capable of aerobic respiration metabolize glucose and oxygen to release energy with carbon dioxide and water as byproducts.


Related Websites:

Terms of service | About