Question:

Does decomposition increase or decrease the amount of dissolved oxygen in water?

Answer:

When water is decomposed electrolytically, the hydrogen atoms in water are reduced, and the oxygen atoms are oxidized.

More Info:

Nonmetals

An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. Common examples are liquid ammonia, liquid sulfur dioxide, sulfuryl chloride and sulfuryl chloride fluoride, phosphoryl chloride, dinitrogen tetroxide, antimony trichloride, bromine pentafluoride, hydrogen fluoride, pure sulfuric acid and other inorganic acids. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment.

The reactions of the compounds containing xenon are mostly conducted in hydrogen fluoride or bromine pentafluoride, which dissolve readily both xenon difluorides and its multiple derivatives, although sulfuric solvents are also used sometimes, in particular sulfuryl chloride fluoride for strong oxidants.

Oxides

An oxidizing agent (also oxidant, oxidizer or oxidiser) is the element or compound in an oxidation-reduction (redox) reaction that accepts an electron from another species. Because the oxidizing agent is gaining electrons, it is said to have been reduced.

The oxidizing agent itself is reduced, as it is taking electrons onto itself, but the reactant is oxidized by having its electrons taken away by the oxidizing agent. Oxygen is the prime (and eponymous) example among the varied types of oxidizing agents.

Oxygen Hydrogen

Water
Oxidane

Hydrogen oxide
Dihydrogen monoxide (DHMO)
Hydrogen monoxide
Dihydrogen oxide
Hydrogen hydroxide (HH or HOH)
Hydric acid
Hydrohydroxic acid
Hydroxic acid
Hydrol
μ-Oxido dihydrogen

Redox Decomposition Chemistry Matter

A chemical element is a pure chemical substance consisting of one type of atom distinguished by its atomic number, which is the number of protons in its nucleus. Elements are divided into metals, metalloids, and non-metals. Familiar examples of elements include carbon, oxygen (non-metals), silicon, arsenic (metalloids), aluminium, iron, copper, gold, mercury, and lead (metals).

The lightest chemical elements, including hydrogen, helium (and smaller amounts of lithium, beryllium and boron), are thought to have been produced by various cosmic processes during the Big Bang and cosmic-ray spallation. Production of heavier elements, from carbon to the very heaviest elements, proceeded by stellar nucleosynthesis, and these were made available for later solar system and planetary formation by planetary nebulae and supernovae, which blast these elements into space. The high abundance of oxygen, silicon, and iron on Earth reflects their common production in such stars, after the lighter gaseous elements and their compounds have been subtracted. While most elements are generally viewed as stable, a small amount of natural transformation of one element to another also occurs at the present time through decay of radioactive elements as well as other natural nuclear processes.

News:


Related Websites:


Terms of service | About
10