Do you lose your memory from the drug ecstasy?


Yes. It makes you lose your memory, and you won't be able to think.

More Info:

Declarative memory (sometimes referred to as explicit memory) is one of two types of long-term human memory. Declarative memory refers to memories which can be consciously recalled such as facts and knowledge. Declarative memory's counterpart is known as non-declarative or procedural memory, which refers to unconscious memories such as skills (e.g. learning to ride a bicycle). Declarative memory can be divided into two categories: episodic memory which stores specific personal experiences and semantic memory which stores factual information. There are two types of declarative memory: semantic memory and episodic memory. Semantic memories are those memories that store general factual knowledge that is independent of personal experience. Some examples of semantic memory include types of food, capital cities of a geographic region, or the lexicon of a common language, such as a person's vocabulary. Episodic memories are those memories that store chunks of observational information attached to a specific event. Some examples of episodic memory include the memory of entering a specific classroom for the first time, the memory of storing your carry-on baggage while boarding a plane headed to a specific destination on a specific day and time, the memory of being notified that you are being terminated from your job, or the memory of notifying a subordinate that they are being terminated from their job. The retrieval of these episodic memories can be thought of as the action of mentally reliving in detail the past events that they concern. Episodic memory is believed to be the system that provides the basic support for semantic memory. The study of human memory stretches back over the last 2000 years. An early attempt to understand memory can be found in Aristotle’s major treatise, On the Soul, in which he compares the human mind to a blank slate. He theorized that all humans are born free of any knowledge and are the sum of their experiences. It wasn’t until the late 1800s, however, that a young German philosopher by the name of Herman Ebbinghaus developed the first scientific approach to studying memory. While some of his findings have endured and remain relevant to this day (Learning Curve), his greatest contribution to the field of memory research was demonstrating that memory can be studied scientifically. In 1972, Endel Tulving proposed the distinction between episodic and semantic memory. This was quickly adopted and is now widely accepted. Following this, in 1985, Daniel Schacter proposed a more general distinction between explicit (declarative) and implicit (procedural) memory With the recent advances in neuroimaging technology, there have been a multitude of findings linking specific brain areas to declarative memory. Despite these advances in Cognitive psychology, there is still much to be discovered in terms of the operating mechanisms of declarative memory. It is unclear whether declarative memory is mediated by a particular “memory system” or if it is more accurately classified as a “type of knowledge” and it is not known how or why declarative memory evolved to begin with. Although many psychologists believe that the entire brain is involved with memory, the hippocampus and surrounding structures appear to be most important in declarative memory specifically. The ability to retain and recall episodic memories is highly dependent on the hippocampus, whereas the formation of new declarative memories relies on both the hippocampus and parahippocampus Other studies have found that the parahippocampal cortices were related to superior Recognition Memory. The Three Stage Model was developed by Eichenbaum, et. Al (2001), and proposes that the hippocampus does three things with episodic memory: To support this model, a version of Piaget’s Transitive Inference Task was used to show that the hippocampus is in fact used as the memory space. When experiencing an event for the first time, a link is formed in the hippocampus allowing us to recall that event in the future. Separate links are also made for features related to that event. For example, when you meet someone new, a unique link is created for them. More links are then connected to that person’s link so you can remember what colour their shirt was, what the weather was like when you met them, etc. Specific episodes are made easier to remember and recall by repeatedly exposing oneself to them (which strengthens the links in the memory space) allowing for faster retrieval when remembering. Hippocampal cells (neurons) are activated depending on what information one is exposed to at that moment. Some cells are specific to spatial information, certain stimuli (smells, etc.), or behaviours as has been shown in a Radial Maze Task. It is therefore the hippocampus that allows us to recognize certain situations, environments, etc. as being either distinct or similar to others. However, the Three Stage Model does not incorporate the importance of other cortical structures in memory. The anatomy of the hippocampus is largely conserved across mammals, and the role of these areas in declarative memory are conserved across species as well. The organization and neural pathways of the hippocampus are very similar in humans and other mammal species. In humans and other mammals, a cross-section of the hippocampus shows the dentate gyrus as well as the dense cell layers of the CA fields. The intrinsic connectivity of these areas are also conserved. Results from an experiment by Davachi, Mitchell, and Wagner (2003) and numerous subsequent studies (Davachi, 2006) show that activation in the hippocampus during encoding is related to a subject's ability to recall prior events or later relational memories. These tests did not differentiate between individual test items later seen and those forgotten. The lateral Prefrontal cortex (PFC) is essential for remembering contextual details of an experience rather than for memory formation. The PFC is also more involved with episodic memory than semantic memory, although it does play a small role in semantics. Using PET studies and word stimuli, Endel Tulving found that remembering is an automatic process. It is also well documented that a hemispheric asymmetry occurs in the PFC: When encoding memories, the Left Dorsolateral PFC (LPFC) is activated, and when retrieving memories, activation is seen in the Right Dorsolateral PFC (RPFC). Studies have also shown that the PFC is extremely involved with autonoetic consciousness (See Tulving's theory). This is responsible for humans’ recollective experiences and ‘mental time travelling’ abilities (characteristics of episodic memory). The amygdala is believed to be involved in the encoding and retrieval of emotionally charged memories. Much of the evidence for this has come from research on a phenomenon known as flashbulb memories. These are instances in which memories of powerful emotional events are more highly detailed and enduring than regular memories (e.g. September 11 attacks, assassination of JFK). These memories have been linked to increased activation in the amygdala. Recent studies of patients with damage to the amygdala suggest that it is involved in memory for general knowledge, and not for specific information. The regions of the Diencephalon have shown brain activation when a remote memory is being recovered and the Occipital lobe, Ventral Temporal lobe, and Fusiform gyrus all play a role in memory formation. Lesion studies are commonly used in cognitive neuroscience research. Lesions can occur naturally through trauma or disease, or they can be surgically induced by researchers. In the study of declarative memory, the hippocampus and the amygdala are two structures frequently examined using this technique. The Morris water navigation task tests spatial learning in rats. In this test rats learn to escape from a pool by swimming toward a platform submerged just below the surface of the water. Visual cues that surround the pool (i.e. Chair or window) help the rat to locate the platform on subsequent trials. The rats' use of specific events, cues and places are all forms of declarative memory. Two groups of rats are observed: a control group with no lesions and an experimental group with hippocampal lesions. In this task created by Morris, et al., rats are placed in the pool at the same position for 12 trials. Each trial is timed and the path taken by the rats is recorded. Rats with hippocampal lesions successfully learn to find the platform. If the starting point is moved, the rats with hippocampal lesions typically fail to locate the platform. The control rats, however, are able to find the platform using the cues acquired during the learning trials. This demonstrates the involvement of the hippocampus in declarative memory. The Odor-odor Recognition Task, devised by Bunsey and Eichenbaum, involves a social encounter between two rats (a "subject" and a "demonstrator"). The demonstrator, after eating a specific type of food, interacts with the subject rat, who then smells the food odor on the other's breath. The experimenters then present the subject rat with a decision between two food options; the food previously eaten by the demonstrator, and a novel food. The researchers found that when there was no time delay, both control rats and rats with lesions chose the familiar food. After 24 hours, however, the rats with hippocampal lesions were just as likely to eat both types of food, while control rats chose the familiar food. This can be attributed to the inability to form episodic memories due to lesions in the hippocampus. The effects of this study can be observed in humans with amnesia, indicating the role of the hippocampus in developing episodic memories that can be generalized to similar situations. Henry Molaison, previously known as H.M., had parts of both his left and right medial temporal lobes(hippocampi) removed which resulted in the loss of the ability to form new memories. The long-term declarative memory was crucially affected when the structures from the medial temporal lobe were removed, including the ability to form of new semantic knowledge and memories. The dissociation in Molaison between the acquisition of declarative memory and other kinds of learning was seen initially in motor learning. Molaison's declarative memory was not functioning, as was seen when Molaison completed the task of repetition priming. His performance does improve over trials, however, his scores were inferior to those of control participants. In the condition of Molaison the same results from this priming task are reflected when looking at the other basic memory functions like remembering, recall and recognizing. Lesions should not be interpreted as an all-or-nothing condition, in the case of Molaison not all memory and recognition is lost, although the declarative memory is severely damaged he still has a sense of self and memories that were developed before the lesion occurred. Patient R.B. was another clinical case reinforcing the role of the hippocampus in declarative memory. After suffering an ischemic episode during a cardiac bypass operation, Patient R.B. awoke with a severe anterograde amnesic disorder. IQ and cognition were unaffected, but declarative memory deficits were observed (although not to the extent of that seen in Molaison). Upon death, an autopsy revealed that Patient R.B. had bilateral lesions of the CA1 cell region along the whole length of the hippocampus. Adolph, Cahill and Schul completed a study showing that emotional arousal facilitates the encoding of material into long term declarative memory. They selected two subjects with bilateral damage to the amygdala, as well as six control subjects and six subjects with brain damage. All subjects were shown a series of twelve slides accompanied by a narrative. The slides varied in the degree to which they evoked emotion - slides 1 through 4 and slides 9 through 12 contain non-emotional content. Slides 5 through 8 contain emotional material, and the seventh slide contained the most emotionally arousing image and description (a picture of surgically repaired legs of a car crash victim). The emotionally arousing slide (slide 7) was remembered no better by the bilateral damage participants than any of the other slides. All other participants notably remembered the seventh slide the best and in most detail out of all the other slides. This shows that the amygdala is necessary to facilitate encoding of declarative knowledge regarding emotionally arousing stimuli, but is not required for encoding knowledge of emotionally neutral stimuli. Stress has a very large impact on the formation of declarative memories. Lupien, et al. completed a study that had 3 phases for participants to take part in. Phase 1 involved memorizing a series of words, phase 2 entailed either a stressful (public speaking) or non-stressful situation (an attention task), and phase 3 required participants to recall the words they learned in phase 1. A declarative memory was formed in phase 1 if the words shown to participants were remembered. There were signs of decreased declarative memory performance in the participants that had to complete the stressful situation after learning the words. This showed that the stress of the situation impaired participants’ ability to form concrete declarative knowledge. In the non-stressful situation, participants could easily remember the words learned from phase 1. Posttraumatic stress disorder (PTSD) emerges after exposure to a traumatic event eliciting fear, horror or helplessness that involves bodily injury, the threat of injury, or death to one’s self or another person The chronic stress in PTSD contributes to an observed decrease in hippocampal volume and declarative memory deficits. In the brain, Glucocorticoids (GC's) modulate the ability of the hippocampus and PFC to process memories. Cortisol is one of the most common GC’s in the human body, and hydrocortisone (a derivative of cortisol) decreases brain activity in the above areas during declarative memory retrieval. Elevations in cortisol occur during stress, and long-term stress impairs declarative memory this way. A study done by Damoiseaux et al. (2007) evaluated the effect of glucocorticoids on MTL and PFC activation in young men. They found that GC’s given to participants 1 hour before retrieval of information impairs free recall of words, yet when administered before or after learning they had no effect. Although it is not known exactly how GC’s influence memory, there are Glucocorticoid receptors in the hippocampus and PFC that tell us these structures are targets for the circulating hormone. However, it is known that cortisone impairs memory function by reducing the blood flow in the right parahippocampal gyrus, left visual cortex, and the Cerebellum. Note: This study involved only male subjects, which may be significant as sex steroids may have different effects in the responses to cortisol administration. Men and women also respond differently to emotional stimuli and this may affect cortisol levels. Also, this study was the first Functional magnetic resonance imaging(fMRI) study to be done involving GC's and more research is necessary to support these findings. It is believed that sleep plays an active role in consolidation of declarative memory. Specifically, sleep’s unique properties enhance memory consolidation, such as the reactivation of newly learned memories during sleep. For example, it has been suggested that the central mechanism for consolidation of declarative memory during sleep is the reactivation of hippocampal memory representations. This reactivation transfers information to neocortical networks where it is integrated into long-term representations. Studies on rats involving maze learning found that hippocampal neuronal assemblies that are used in the encoding of spatial information are reactivated in the same temporal order. Similarly, positron emission tomography (PET) has shown reactivation of the hippocampus in slow-wave sleep (SWS) after spatial learning. Together these studies show that newly learned memories are reactivated during sleep and through this process new memory traces are consolidated. In addition, researchers have identified three types of sleep (SWS, sleep spindle and REM) in which declarative memory is consolidated. Slow-Wave Sleep, often referred to as deep sleep, plays the most important role in consolidation of declarative memory and there is a large amount of evidence to support this claim. One study found that the first 3.5 hours of sleep offer the greatest performance enhancement on memory recall tasks because the first couple of hours are dominated by SWS. Additional hours of sleep do not add to the initial level of performance. Thus this study suggests that full sleep may not be important for optimal performance of memory. Another study shows that people who experience SWS during the first half of their sleep cycle compared to subjects who did not, showed better recall of information. However this is not the case for subjects who were tested for the second half of their sleep cycle, as they experience less SWS. Another key piece of evidence regarding SWS’s involvement in declarative memory consolidation is a finding that people with pathological conditions of sleep, such as insomnia, exhibit both reduction in Slow-Wave Sleep and also have impaired consolidation of declarative memory during sleep. Another study found that middle aged people compared to young group had a worse retrieval of memories. This in turn indicated that SWS is associated with poor declarative memory consolidation but not with age itself. Some researchers suggest that sleep spindle, a burst of brain activity occurring during stage 2 sleep, plays a role in boosting consolidation of declarative memories. Critics point out that spindle activity is positively correlated with intelligence. In contrast, Schabus and Gruber point out that sleep spindle activity only relates to performance on newly learned memories and not to absolute performance. This supports the hypothesis that sleep spindle helps to consolidate recent memory traces but not memory performance in general. The relationship between sleep spindles and declarative memory consolidation is not yet fully understood.][ There is a relatively small body of evidence that supports the idea that REM sleep helps consolidate highly emotional declarative memories. For instance Wagner, et al. compared memory retention for emotional versus neutral text over two instances; early sleep that is dominated by SWS and late sleep that is dominated by REM phase. This study found that sleep improved memory retention of emotional text only during late sleep phase, which was primarily REM. Similarly, Hu & Stylos-Allen, et al. performed a study with emotional versus neutral pictures and concluded that REM sleep facilitates consolidation of emotional declarative memories. The view that sleep plays an active role in declarative memory consolidation is not shared by all researchers. For instance Ellenbogen, et al. argue that sleep actively protects declarative memory from associative interference. Furthermore, Wixted believes that the sole role of sleep in declarative memory consolidation is nothing more but creating ideal conditions for memory consolidation. For example, when awake, people are bombarded with mental activity which interferes with effective consolidation. However, during sleep, when interference is minimal, memories can be consolidated without associative interference. More research is needed to make a definite statement whether sleep creates favourable conditions for consolidation or it actively enhances declarative memory consolidation. Amnesiacs are frequently portrayed in television and movies. Some of the better known examples include: In the romantic comedy 50 First Dates (2004), Adam Sandler plays veterinarian Henry Roth, who falls for Lucy Whitmore, played by Drew Barrymore. Having lost her short term memory in a car crash, Lucy can only remember the current day's events until she falls asleep. When she wakes up the next morning, she has no recollection of the previous day's experiences. These experiences would normally be transferred into declarative knowledge, allowing them to be recalled in the future. Although this movie is not the most accurate representation of a true amnesic patient, it is useful for informing viewers of the detrimental effects of amnesia. Memento (2000) a film inspired by the case of Henry Molaison (H.M.). Guy Pearce plays an ex-insurance investigator suffering from severe anterograde amnesia caused by a head injury. Unlike most amnesiacs, Leonard retains his identity and the memories of events that occurred before the injury, but loses all ability to form new memories. This loss of ability to form new memories indicates that the head injury affected the medial temporal lobe of the brain resulting in the inability for Leonard to form declarative memory. Finding Nemo features a reef fish named Dory with an inability to develop declarative memory. This prevents her from learning or retaining any new information such as names or directions. The exact origin of Dory's impairment is not mentioned in the film, but her memory loss accurately portrays the difficulties facing amnesiacs. Ghajini is an Indian psychological thriller. The film explores the life of a rich businessman who develops anterograde amnesia following a violent encounter in which his love interest was killed.
Countdown to Ecstasy is the second studio album by American rock group Steely Dan, released in July 1973 by ABC Records. It was recorded at Caribou Ranch in Nederland and The Village Recorder in Santa Monica. After the departure of vocalist David Palmer, the group recorded the album with Donald Fagen singing lead on all the songs. Although it was a critical success, the album failed to generate a hit single, and consequently charted at only number 35 on the 200Billboard. It was eventually certified gold by the Recording Industry Association of America (RIAA), having shipped 500,000 copies in the United States. Well received upon its release, Countdown to Ecstasy received perfect scores from music critics in retrospective reviews. After the departure of vocalist David Palmer, Steely Dan recorded Countdown to Ecstasy with Donald Fagen as the lead singer on all of the songs. The album was recorded at Caribou Ranch in Nederland and The Village Recorder in Santa Monica. Like their 1972 debut album Can't Buy a Thrill, Countdown to Ecstasy has a rock music sound that exhibits a strong influence from jazz. It comprises uptempo, four-to-five-minute rock songs, which, apart from the bluesy vamps of "Bodhisattva" and "Show Biz Kids", are subtly textured and feature jazz-inspired interludes. Countdown to Ecstasy was the only album written by Steely Dan for a live band. "My Old School", a song about college placement and prostitution, features reverent horns and aggressive piano riffs and guitar solos. "The Boston Rag" develops from a jazzy song to unrefined playing by the band, including a distorted guitar solo by Jeff "Skunk" Baxter. Songs on the album incorporate pop jazz, easy listening, and avant-garde styles. Jim Hodder's drumming eschews rock music for pop and jazz grooves. Bop-style jazz soloing is set in the context of a pop song on "Bodhisattva". Countdown to Ecstasy also has themes similar to Can't Buy a Thrill. It explores topics such as drug abuse, class envy. and West Coast excess. "King of the World" follows the sole survivor of a nuclear explosion, and "Show Biz Kids" evaluates the Los Angeles lifestyle. "Your Gold Teeth" follows a jaded female grifter who uses her attractiveness and cunning. Music journalist Rob Sheffield said that Donald Fagen and Walter Becker's lyrics on the album portray America as "one big Las Vegas, with gangsters and gurus hustling for souls to steal." He viewed it as the first in Steely Dan's trilogy of albums that, along with Pretzel Logic (1974) and Katy Lied (1975), showcased "a film noir tour of L.A.'s decadent losers, showbiz kids, and razor boys." Erik Adams of The A.V. Club wrote that the album has a "dossier of literate lowlifes, the type of character studies that say, 'Why yes, the name Steely Dan is an allusion to a dildo described in Naked Lunch.' These characters hang around the corners of the entire Steely Dan discography, but they come into their own on Countdown to Ecstasy". The album was titled as a joke about attempts to rationalize a state of spirituality. The opening song "Bodhisattva" is about how buying and selling can lead to redemption. Its title refers to the Bodhisattva, who are those that have achieved spiritual perfection but remain in the material world as helpers of other people. The song's protagonist asks them to take him by the hand and show him the "shine of your Japan / the sparkle of your china." Attracted by the lure of Eastern religion and material goods, he then pledges to sell his "house in town" in order to move and affiliate himself with the Eastern world. Fagen summarized the song's message as "Lure of East. Hubris of hippies. Quick fix". "Razor Boy" is a bitter, ironic pop song with lyrics that subtly criticize complacency and materialism. According to Ivan Kreilkamp of Spin, "Steely Dan speaks to us from that 'cold and windy day' when the trappings of hipness and sexiness fall away to reveal a lonely figure waiting for a fix. 'Will you still have a song to sing when the razor boy comes and takes your fancy things away?' Fagen asks a generation stupefied by nostalgia and self-involvement". The original cover painting was by Fagen's girlfriend Dorothy White. At the insistence of ABC Records president Jay Lasker, however, several figures had to be added when he found the discrepancy between five band members and three figures on the cover unacceptable.The proofs for the album cover were later stolen during a dispute over the final layout. Countdown to Ecstasy was released in July 1973 by ABC Records in the United States and Probe Records in the United Kingdom. It was less commercially successful than Can't Buy a Thrill. The album failed to generate a hit single, and consequently charted at only number 35 on the 200Billboard. It spent 34 weeks on the chart, and was eventually certified gold by the Recording Industry Association of America (RIAA), having shipped 500,000 copies in the United States. Countdown to Ecstasy was well received by contemporary music critics. David Logan of Rolling Stone felt that the album's musical formula does not get redundant and said that, despite ordinary musicianship and occasionally absurd lyrics, Steely Dan's "control" of their basic rock format is "refreshing" and "bodes well for the group's longterm success." Billboard complimented the "studio effect" of the dual guitar playing and found the "grandiloquent vocal blend" catchy. Stereo Review called it a "really excellent album" with "witty and tasteful" arrangements, "winning" performances, "high quality" songs, and a "potent and persuasive" mix of rock, jazz, and pop styles. Robert Christgau, writing in Creem, gave the album an "A–", and observed "studio-perfect licks that crackle and buzz when you listen hard" and "invariably malicious" vocals that back the group's obscure lyrics. He named Countdown to Ecstasy the ninth best album of 1973. In a 1981 review, Christgau gave it an "A" and said that Steely Dan achieved a "deceptively agreeable studio slickness" because of Fagen's replacement of Palmer, who did not fit the group. In The Rolling Stone Album Guide (2004), Rob Sheffield gave the album five out of five stars and called it "a thoroughly amazing, hugely influential album" with "cold-blooded L.A. studio rock tricked out with jazz piano and tough guitar". Pat Blashill also gave the album five stars in his review for Rolling Stone. He said that the "joy in these excellent songs" and in the band's playing revealed Steely Dan to be "human, not just brainy", "like good stretches of the Stones' Exile on Main Street". In his five-star review of the album, Allmusic's Stephen Thomas Erlewine found Countdown to Ecstasy musically "riskier" than the band's debut album and wrote that the songs are "rich with either musical or lyrical detail that their album rock or art rock contemporaries couldn't hope to match." Chris Jones of BBC Music found Steely Dan's ideas to be "post-modern" and "erudite", and asserted that they were "setting a benchmark that few have ever matched." Music journalist Paul Lester viewed it as a progression from their debut album and wrote that "Becker and Fagen offered cruel critiques of the selt-obsessed 'Me' decade", while their "blend of cool jazz and bebop, Brill Building song craft and rock was unparallelled at the time (only Britain's 10cc were creating such intelligent pop in the early Seventies)". All songs written by Walter Becker and Donald Fagen.
Retrospective memory refers to memory for people, words, and events encountered or experienced in the past. It includes all other types of memory including episodic, semantic and procedural. It can be either implicit or explicit. In contrast, prospective memory involves remembering something or remembering to do something after a delay, such as buying groceries on the way home from work. However, it is very closely linked to retrospective memory, since certain aspects of retrospective memory are required for prospective memory. Early research on prospective memory and retrospective memory has demonstrated that retrospective memory has a role in prospective memory. It was necessary to create more accurate terms in order to explain the relationship fully. Prospective memory describes more accurately an experimental paradigm, therefore, the term prospective remembering was subsequently used. A review by Burgess and Shallice described studies where patients had impaired prospective memory, but intact retrospective memory, and also studies where the impaired retrospective memory caused an impact on prospective memory. A double dissociation for the two has not been found, therefore concluding they are not independent entities. The role of retrospective memory in prospective memory is suggested to be minimal, and takes the form of the information required to make plans. According to Einstein & McDaniel (1990) the retrospective memory component of the prospective remembering task refers to the ability to retain the basic information about action and context. An example used in the reviews explains this in the following scenario: The basic information of the retrieval context includes time, location and objects, which in combination form the required retrieval context. Each individual representation required is a form of retrospective memory. Despite all the research this issue is still debatable within the scientific community. Retrospective episodic memory is recollection of past episodes. Significant research in this field looks at the phenomenon of mental time travel. Mental time travel (MTT) is defined as the ability to mentally project oneself backwards in time to re-live past personal experiences, or forward in time to pre-live possible events in the future . It is a concept created by Canadian psychologist Endel Tulving. It does not simply refer to knowing an event happened, but requires conscious awareness that the individual is indeed reliving the episode. Due to this, it is certain that mental time travel requires central executive functioning, and most often a conscious ability. However new research has found many cases in which mental time travel occurs involuntarily without consciousness. Specifically research shows this occurs for autobiographical events, and as a result these cases are more specific and detail oriented. An example of this would be the phenomenon of scent: How a particular scent can send an individual back to a specific event in their lifetime. There is also evidence that involuntary and voluntary mental time travel differ on activation levels in areas of the brain suggesting that they have different retrieval mechanisms. Current research has moved away from the retrospective portion and towards the prospective aspect of mental time travel. There is also extensive research on whether mental time travel is unique to humans as there has been some evidence that it may be possible to occur in animals Retrospective episodic memory is the memory of moments from the past. It is frequently used in studies of Alzheimer patients and testing their dementia. A study by Livner et al. (2009) compared the effect of the disease on both prospective and retrospective memory. In this case the episodic memory being tested was the ability to remember the testing instructions. To test retrospective memory participants were presented with a list of nouns that had been divided into four categories. The results of retrospective memory were divided into three sections: number of categories, number of items remembered and forgetting ratio, in order to look at the three separate process in creating memory (encoding, retrieval, storage). Using their results and knowledge of episodic memory the researchers were able to find a pattern of functional impairments in the brain. Retrospective autobiographical memory is recalling specific events from your own past. Testing of this type of memory has been used when researching the effect of emotion and context on memory. Abenavoli and Henkel (2009) conducted a study looking at childhood events, context and metamemory. They wanted to see if the participants memory of remembering childhood events was accurate. The results showed that when context was recreated metamemory improved as did vividness of the actual event. Besides these topics, it is also used in studying mental time travel and age-related factors. Retrospective semantic memory refers to the collection of knowledge, meaning and concepts that have been acquired over time. It plays a significant role in the study of priming. Jones (2010) researched a pure mediated priming effect and wanted to discover which model accounted for it. Pure priming refers to the connection between two concepts that have a weak or no association with each other. Each of three potential models (spreading activation, compound-cue and semantic matching) were tested with the results concluding that retrospective semantic matching model creates the pure priming effect. This study shows pure priming has more applications than previously thought. Retrograde amnesia is defined as the loss of memory of events and experiences occurring prior to an illness, accident, injury, or traumatic experience such as rape or assault. The amnesia may cover events over a longer or only a brief period. Typically, it declines with time, with earlier memories returning first. There are many possible causes of amnesia. The most common include Alzheimer’s disease, traumatic brain injury, brain infection (such as encephalitis or meningitis), dementia, seizures, and stroke. Less common causes include a brain tumor or psychiatric disorders (schizophrenia, depression, criminal behavior, or psychogenic amnesia). Psychogenic amnesia usually happens in close association with a stressful event that involves serious threat to life or health. There are two types of retrograde amnesia, one dealing with episodic memory, and one dealing with semantic memeory. Semantic retrograde amnesia involves loss of generic, lifelong knowledge, as in the various forms of aphasia or agnosia, and also loss of learned motor skills, as in the various types of apraxia. Its primary focus is on retrograde amnesia for specific, usually time-limited, knowledge. In the case of semantic retrograde amnesia, memory for public events and memory for people have formed the primary corpus of research. A study was conducted by Kesner (1989) on retrospective memory involving rats. Lesions made to the medial prefrontal cortex of rats led to impairment of retrospective memory, as well as strong impairment to prospective memory on a radial arm task. Different brain regions in the medial temporal lobe play a unique role in memory. The medial temporal lobe seems to function as a memory system for consciously available events and facts, and is important for the acquisition of new episodic and semantic memory. There is also evidence that the medial temporal lobe automatically encodes memories. The role of the medial temporal lobe for retrospective memory was assessed by Okuda et al. (2003) using Positron Emission Tomography (PET). The PET found that thinking about past events increased blood flow to the medial temporal lobes, emphasizing that this brain area contributes to the activation of retrospective memory. Also, the medial temporal lobe displayed activation levels associated with prospective memories. This finding gives support for the belief that thinking about the future to an extent relies upon thinking about the past, showing a close relationship between retrospective memory and prospective memory. The hippocampus plays an important role for remembering specific personal experiences in humans, as well as memory for sequence of events. A series of lesion studies assessed the role of the hippocampus on retrospective memory. In the first delayed response task, nonhuman primates were shown two food wells. For the primates to get a reward, they had to remember which food well was baited. However, the primate had to retain the information about the two prospects until an apparatus was lowered and raised after a delay interval. The results showed that lesions to the hippocampus impaired performance on this task. In a variation of the study, the primates were required to approach the food well that was empty after a delay. It was found that damage to the thalamus also caused impaired performance on both tasks, but at longer delay intervals. These studies confirmed that damage to the hippocampus and thalamus impaired the recall for episodic memory of previously experienced events. In a lesion study involving rats, Ferbinteanu and Shapiro (2003) found the importance of the hippocampus for correctly remembering past events. In the study, rats with fornix lesions displayed poor choice accuracy in a spatial task requiring memory for temporal context, which was seen as evidence for impaired retrospective memory. In an earlier study, Kametani and Kesner (1989) found that rats with lesions in the hippocampus made a large number of errors on a radial arm maze, indicating impaired retrospective memory for points of interpolation within the maze. It is known that the thalamus plays a crucial role in memory. While investigating stroke-patients with damage to the thalamus, Cipolotti et al. (2008) found that the stroke victims had poor recognition and recall memory on verbal and non-verbal tests. The poor recall identified that the retrospective memory of the patients was being effected by the damage on the thalamus due to stroke. Lesions to the thalamus have been found to impair the recognition memory of monkeys. In a study conducted by Aggleton and Mishkin, they found that monkeys with lesions to the anterior thalamus and the posterior thalamus had an impaired ability for recognition and associative memory on matching tests. The researchers also suggested that combined damage to both regions of the thalamus can lead to amnesia. The amygdala plays a special role in that it is crucial to the emotional aspect of retrospective memory. It is responsible for the encoding of emotionally laden events, and there is evidence that memories for emotional events are more vivid than other memories. The amygdala has been associated with memories for past emotional events. A number of studies have provided evidence that the amygdala acts as an intermediate for emotionally influenced memory. These studies have investigated lesions of the amygdala in animals and humans. Imaging studies have shown that amygdala activation is associated with emotional memory, and that past emotional memories are often better remembered than neutral memories. It has also been seen that the amygdala enhances memory in relation to the intensity of emotion in past experience, as well as enhancing declarative memory for emotional experiences. Hamann et al. (1999) also found that emotional events (both pleasant and aversive) are better remembered than neutral events. They went on to find that the amygdala plays a crucial role for enhancing the strength of long-term and episodic memory. Using PET, the amygdala was shown to be responsible for enhanced episodic memory in the recognition of emotional stimuli. Often involve testing both prospective and retrospective memory; sometimes difficult to isolate one. Additionally, Mantyla (2003) compared the results of the PRMQ to word recall tests of RM and found that they did not match. In this study retrospective memory performance did not match retrospective memory scores on PRMQ . Age is a significant factor that effects memory. There is tremendous evidence that infants can learn and remember. However, infantile amnesia is an important, yet difficult area to study. Events from infancy simply cannot be remembered. Many studies have tried and failed to determine the cause of this. Consequently, many theories have been developed to explain this phenomenon. These theories range from the Freudian psychodynamic theory that remembering events from infancy would be damaging to the "ego", to theories that explain the underdeveloped hippocampus of an infant, and also theories that conclude that infants have not yet developed autonoetic consciousness of having experienced remembered events. This theory relies on Tulving's view of episodic memory. Three studies were conducted to examine the differences in specificity at retrieval between younger adults (age range: 19–25 years, mean = 21.5 years), and older adults (age range: 64–82 years, mean = 74.1 years). It was found that older adults had lower retrieval for high specificity tests, but not for low specificity. And it was also found that the effects of divided attention on retrieval of younger adults mimicked the effects of aging. Therefore, retrieval efficiency depends on effortful, resource-demanding retrieval processes that is diminished in older adults. As we age, the ventricles in the brain get larger as our brains get smaller. Functional changes do not normally depend on total brain size, but rather which part of the brain is getting smaller. The frontal lobes usually shrink more quickly, and the temporal and occipital lobes are slower. 20-30% of neurons in the hippocampus (which plays a critical role in memory) are lost by the age of 80. It has also been found that dopamine levels decrease by 5-10% per decade. This neurotransmitter plays a critical role in neural cognition (decrease associated with Parkinson’s disease and Huntingdon’s disease). Some differences in memory performance have been observed between men and women. A series of experiments revealed that women did better at verbal episodic memory tasks (ex. remembering words, objects, pictures and everyday events), tasks with both verbal and visuospatial processing (ex. remembering the location of car keys), and tasks requiring little to no verbal processing (ex. recognition of familiar odours). Men, on the other hand, were better at purely visuospatial processing (ex. remembering symbolic or non-linguistic information). All of these differences may vary due to environmental factors such as education. It has been found that even though memory usually declines with age, elderly people tend to remember more positive memories than negative or even neutral ones. As we grow older, we focus more on positive things and start to develop the skill of emotion regulation which is "monitoring, evaluating, altering and gating one's emotional reactions and memories about emotional experiences" . This is also referred to as motivated forgetting . An unusual form of motivated forgetting is called psychogenic amnesia in which a very severe emotional stressor causes one to lose a large amount of personal memories without an observable biological cause . Another reaction to a very severe stressor is called post traumatic stress disorder. People who have been subject to a traumatic event that has included death of others or a possibility of death or severe injury to oneself cannot forget these memories. This sometimes leads to flashbacks and nightmares that cause people to re-live these traumatic events for long periods afterwards . Miron-Shatz et al. looked at life as we actually live it and the differences that emerge when recalling it. The goal was to discover if there are qualitative differences for remembering pleasant versus unpleasant events. It was discovered that gaps occur for both pleasant and unpleasant events; however they were more pronounced for unpleasant events, meaning pleasant events were recalled as neutral events, but unpleasant events were recalled at extremely unpleasant. These findings support the notion that unpleasant events have a stronger impact on our recall . Traumatic brain injury happens when the head suffers from a sharp blow, or suddenly accelerates or decelerates. In these cases, the brain gets churned around, and can be damaged by the bony bumps and knobs inside the skull, or by the twisting and tearing of fibres in the brain . If the traumatic brain injury is severe enough, it can lead to an initial coma, which is then followed by a time of post-traumatic amnesia. Post traumatic amnesia typically resolves itself gradually, however it will leave a mild, but permanent deficit in the patient’s memory . Lesions to certain areas of the brain may lead to cognitive and memory deficits - see Neuroanatomy section above. A study by de Win et al. used advanced magnetic resonance and SPECT (Single Photon Emission Computed Tomography) imaging techniques on the same sample study to determine if any functional differences appear in the brains of ecstasy users. It is almost impossible to find purely ecstasy users (without the use of cannabis, cocaine or amphetamines), but with statistical analysis, it was found that ecstasy has specific serotonergic damaging effects on the thalamus. This damage was speculated to be axonal damage to serotonergic cells while cell bodies remained intact. This damage is at least partly responsible for the commonly found reduced verbal memory in users. Conflicting results have been found by many studies that have looked at brain anatomy in frequent marijuana users. The goal is to determine whether or not marijuana has any effects on cognitive abilities (including memory). A study done by Jager et al. concluded that there are in fact anatomical differences between the brains of frequent marijuana users and non-using control samples. Frequent users showed a lower magnitude of activity (but no structural changes) in parahippocampal regions. However, when subject to associative memory tasks, users performed within normal ranges. This shows that a decrease in activation in these regions is associated with frequent marijuana use, but does not affect memory task performance . This is still a controversial issue, and more research is required to draw conclusive results. Alzheimer's Disease accounts for 60 to 70 percent of cases of dementias. The brains of Alzheimer's patients have an abundance of plaques and tangles which begin in areas involved in memory, spreading to other areas, and eventually affecting most of the brain. Vascular Dementia is often considered the second-most common form of dementia and is the reduction of blood flow to parts of the brain most often caused by many very small strokes that have an accumulative effect on cognitive abilities including memory. Korsakoff's is caused by a severe thiamine (vitamin B1) deficiency due to chronic alcoholism or malnourishment. Thiamine is necessary for the body to process carbohydrates. This thiamine dificiency can lead to symptoms such as: confusion, loss of balance, drowsiness, and some specific problems with vision. When the deficiency is considered severe, the memory loss may be accompanied by agitation and dementia. The standard treatment is intravenous thiamine, administered as soon as possible after symptoms become apparent. Unfortunately, the treatment does not correct the condition and recovery is known to be gradual and sometimes incomplete. Temporally graded retrograde amnesia extending back several decades (early memories in life) are a common feature of patients with the alcoholic Korsakoff’s syndrome, which primarily affects the diencephalon, usually with concomitant frontal lobe atrophy. The absence of retrospective memory creates an amnesia that has frequently been a key element in plot lines in television, film and novels. Some examples are: Memory is frequently the subject of many wise quotations. The following are some examples relating to retrospective memory (or lack thereof): Einstein, G.O. & McDaniel, M.A. (1990). Normal ageing and prospective memory.
Racetrack memory (or domain-wall memory (DWM)) is an experimental non-volatile memory device under development at IBM's Almaden Research Center by a team led by Stuart Parkin. In early 2008, a 3-bit version was successfully demonstrated. If it is developed successfully, racetrack would offer storage density higher than comparable solid-state memory devices like flash memory and similar to conventional disk drives, and also have much higher read/write performance. It is one of a number of new technologies trying to become a universal memory in the future. Racetrack memory uses a spin-coherent electric current to move magnetic domains along a nanoscopic permalloy wire about 200 nm across and 100 nm thick. As current is passed through the wire, the domains pass by magnetic read/write heads positioned near the wire, which alter the domains to record patterns of bits. A racetrack memory device is made up of many such wires and read/write elements. In general operational concept, racetrack memory is similar to the earlier bubble memory of the 1960s and 1970s. Delay line memory, such as mercury delay lines of the 1940s and 1950s, are a still-earlier form of similar technology, as used in the UNIVAC and EDSAC computers. Like bubble memory, racetrack memory uses electrical currents to "push" a magnetic pattern through a substrate. Dramatic improvements in magnetic detection capabilities, based on the development of spintronic magnetoresistive-sensing materials and devices, allow the use of much smaller magnetic domains to provide far higher bit densities. In production, it is expected that the wires can be scaled down to around 50 nm. There are two ways to arrange racetrack memory. The simplest is a series of flat wires arranged in a grid with read and write heads arranged nearby. A more widely studied arrangement uses U-shaped wires arranged vertically over a grid of read/write heads on an underlying substrate. This allows the wires to be much longer without increasing its 2D area, although the need to move individual domains further along the wires before they reach the read/write heads results in slower random access times. This does not present a real performance bottleneck; both arrangements offer about the same throughput. Thus the primary concern in terms of construction is practical; whether or not the 3D vertical arrangement is feasible to mass produce. Current projections suggest that racetrack memory will offer performance on the order of 20-32 ns to read or write a random bit. This compares to about 10,000,000 ns for a hard drive, or 20-30 ns for conventional DRAM. The authors of the primary work also discuss ways to improve the access times with the use of a "reservoir," improving to about 9.5 ns. Aggregate throughput, with or without the reservoir, is on the order of 250-670 Mbit/s for racetrack memory, compared to 12800 Mbit/s for a single DDR3 DRAM, 1000 Mbit/s for high-performance hard drives, and much slower performance on the order of 30 to 100 Mbit/s for flash memory devices. The only current technology that offers a clear latency benefit over racetrack memory is SRAM, on the order of 0.2 ns, but is more expensive and has a feature size of about 45 nm currently with a cell area of about 140 F2. Flash memory, in particular, is a highly asymmetrical device. Although read performance is fairly fast, especially compared to a hard drive, writing is much slower. Flash memory works by "trapping" electrons in the chip surface, and requires a burst of high voltage to remove this charge and reset the cell. In order to do this, charge is accumulated in a device known as a charge pump, which takes a relatively long time to charge up. In the case of NOR flash memory, which allows random bit-wise access like racetrack memory, read times are on the order of 70 ns, while write times are much slower, about 2,500 ns. To address this concern, NAND flash memory allows reading and writing only in large blocks, but this means that the time to access any random bit is greatly increased, to about 1,000 ns. In addition, the use of the burst of high voltage physically degrades the cell, so most flash devices allow on the order of 100,000 writes to any particular bit before their operation becomes unpredictable. Wear leveling and other techniques can spread this out, but only if the underlying data can be re-arranged. The key determinant of the cost of any memory device is the physical size of the storage medium. This is due to the way memory devices are fabricated. In the case of solid-state devices like flash memory or DRAM, a large "wafer" of silicon is processed into many individual devices, which are then cut apart and packaged. The cost of packaging is about $1 per device, so, as the density increases and the number of bits per devices increases with it, the cost per bit falls by an equal amount. In the case of hard drives, data is stored on a number of rotating platters, and the cost of the device is strongly related to the number of platters. Increasing the density allows the number of platters to be reduced for any given amount of storage. In most cases, memory devices store one bit in any given location, so they are typically compared in terms of "cell size", a cell storing one bit. Cell size itself is given in units of F², where F is the design rule, representing usually the metal line width. Flash and racetrack both store multiple bits per cell, but the comparison can still be made. For instance, modern hard drives appear to be rapidly reaching their current theoretical limits around 650 nm²/bit, which is defined primarily by our capability to read and write to tiny patches of the magnetic surface. DRAM has a cell size of about 6 F², SRAM is much worse at 120 F². NAND flash memory is currently the densest form of non-volatile memory in widespread use, with a cell size of about 4.5 F², but storing three bits per cell for an effective size of 1.5 F². NOR flash memory is slightly less dense, at an effective 4.75 F², accounting for 2-bit operation on a 9.5 F² cell size. In the vertical orientation (U-shaped) racetrack, about 10-20 bits are stored per cell, which itself can have a physical size of at least about 20 F². In addition, bits at different positions on the "track" would take different times (from ~10 ns to nearly a microsecond, or 10 ns/bit) to be accessed by the read/write sensor, because the "track" is moved at fixed rate (~100 m/s) past the read/write sensor. Racetrack memory is one of a number of new technologies aiming to replace flash memory, and potentially offer a "universal" memory device applicable to a wide variety of roles. Other leading contenders include magnetoresistive random-access memory (MRAM), phase-change memory (PCRAM) and ferroelectric RAM (FeRAM). Most of these technologies offer densities similar to flash memory, in most cases worse, and their primary advantage is the lack of write-endurance limits like those in flash memory. Field-MRAM offers excellent performance as high as 3 ns access time, but requires a large 25-40 F² cell size. It might see use as an SRAM replacement, but not as a mass storage device. The highest densities from any of these devices is offered by PCRAM, which has a cell size of about 5.8 F², similar to flash memory, as well as fairly good performance around 50 ns. Nevertheless, none of these can come close to competing with racetrack memory in overall terms, especially density. For example, 50 ns allows about five bits to be operated in a racetrack memory device, resulting in an effective cell size of 20/5=4 F², easily exceeding the performance-density product of PCM. On the other hand, without sacrificing bit density, the same 20 F² area can also fit 2.5 2-bit 8 F² alternative memory cells (such as resistive RAM (RRAM) or spin-torque transfer MRAM), each of which individually operating much faster (~10 ns). A difficulty for this technology arises from the need for high current density (>108 A/cm²); a 30 nm x 100 nm cross-section would require >3 mA. The resulting power draw would be higher than, for example, spin-torque transfer memory or flash memory. One limitation of the early experimental devices was that the magnetic domains could be pushed only slowly through the wires, requiring current pulses on the orders of microseconds to move them successfully. This was unexpected, and led to performance equal roughly to that of hard drives, as much as 1000 times slower than predicted. Recent research at the University of Hamburg has traced this problem to microscopic imperfections in the crystal structure of the wires which led to the domains becoming "stuck" at these imperfections. Using an X-ray microscope to directly image the boundaries between the domains, their research found that domain walls would be moved by pulses as short as a few nanoseconds when these imperfections were absent. This corresponds to a macroscopic performance of about 110 m/s. The voltage required to drive the domains along the racetrack would be proportional to the length of the wire. The current density must be sufficiently high to push the domain walls (as in electromigration).
The Politics of Ecstasy is the second full length album by heavy metal band Nevermore. It was released in 1996. The album is named after Timothy Leary's book of the same name. The first chapter of that book is entitled "The Seven Tongues of God", which is the title of the first song on the album. This album is considered to be Nevermore's most progressive album, while still containing elements that define their sound. There is a spoken word sample from the track "Next in Line" from the Adrian Lyne movie, Jacob's Ladder. All lyrics written by Warrel Dane, all music composed by Jeff Loomis.
Key:SHXWCVYOXRDMCX-UHFFFAOYSA-NYes  MDMA (3,4-methylenedioxy-N-methylamphetamine) is an empathogenic drug of the phenethylamine and amphetamine classes of drugs. MDMA has become widely known as "ecstasy" (shortened to "E", "X", or "XTC"), usually referring to its street pill form, although this term may also include the presence of possible adulterants. The term "mandy" or "molly" colloquially refers to MDMA in powder or crystalline form, usually implying a higher level of purity. MDMA can induce euphoria, a sense of intimacy with others, and diminished anxiety. Many studies, particularly in the fields of psychology and cognitive therapy, have suggested MDMA has therapeutic benefits and facilitates therapy sessions in certain individuals, a practice for which it had been formally used in the past. Clinical trials are now testing the therapeutic potential of MDMA for post-traumatic stress disorder, anxiety associated with terminal cancer and addiction. MDMA is criminalized in most countries (though some civil society initiatives—such as the Global Commission on Drug Policy—consider educating the public about the drug more important than curtailing supply) and its possession, manufacture, or sale may result in criminal prosecution. Some limited exceptions exist for scientific and medical research. For 2008, the UN estimated between 10 and 25 million people globally used MDMA at least once in the past year. This was broadly similar to the number of cocaine, amphetamine, and opioid users, but far fewer than the global number of cannabis users. It is taken in a variety of contexts far removed from its roots in psychotherapeutic settings, and is commonly associated with dance parties (or "raves") and electronic dance music. Regulatory authorities in several locations around the world have approved scientific studies administering MDMA to humans to examine its therapeutic potential and its effects. MDMA has long been suggested as possibly useful in psychotherapy, facilitating self-examination with reduced fear. Indeed, some therapists, including Leo Zeff, Claudio Naranjo, George Greer, Joseph Downing, and Philip Wolfson, used MDMA in their practices until it was made illegal. George Greer synthesized MDMA in the lab of Alexander Shulgin and administered it to about 80 of his clients over the course of the remaining years preceding MDMA's Schedule I placement in 1985. In a published summary of the effects, the authors reported patients felt improved in various mild psychiatric disorders and experienced other personal benefits, especially improved intimate communication with their significant others. In a subsequent publication on the treatment method, the authors reported one patient with severe pain from terminal cancer experienced lasting pain relief and improved quality of life. Recently, two randomized, controlled trials of MDMA-assisted psychotherapy for post-traumatic stress disorder were published. Although small, these trials are consistent with earlier results. The patients treated with two or three sessions of MDMA-psychotherapy showed greater improvement than the ones treated by placebo-psychotherapy or placebo-inactive dose of MDMA. This improvement was generally maintained on a follow-up several years later. Small doses of MDMA are used as an entheogen to enhance prayer or meditation by some religious practitioners. MDMA is often considered the drug of choice within the rave culture and is also used at clubs, festivals and parties. In the rave environment, the sensorial effects from the music and setup such as lasers are often highly synergistic with the drug. The psychedelic amphetamine quality of MDMA lends it to variable reasons as to why it appeals to users in the rave setting. Some find ego-melting mass communion while others use it as party fuel. MDMA is occasionally known for being taken in conjunction with psychedelic drugs, such as LSD or psilocybin mushrooms, or even common drugs such as cannabis. As this practice has become more prevalent, most of the more common combinations have been given nicknames, such as "candy flipping" for MDMA combined with LSD, "hippy flipping" for MDMA with psilocybin mushrooms, or "kitty flipping" for MDMA with ketamine. The term "flipping" may come from the subjective effects of using MDMA with a psychedelic in which the user may shift rapidly between a more lucid state and a more psychedelic state several times during the course of their experiences. Many users use mentholated products while taking MDMA for its cooling sensation while experiencing the drug's effects. Examples include menthol cigarettes, Vicks VapoRub, NyQuil, and lozenges. The primary effects attributable to MDMA consumption are predictable and fairly consistent among users. In general, users begin reporting subjective effects within 30–60 minutes of consumption, hitting a peak at about 75–120 minutes, reaching a plateau that lasts about 3.5 hours. This is followed by a comedown of a few hours. After the drug has run its course, many users report feeling fatigue. The following subjective effects of MDMA were statistically significant in a placebo-controlled trial, using Altered States of Consciousness rating scale: derealization, depersonalization, altered perception of space and time, positive basic mood, mania-like experience, anxious derealization, thought disorder, fears of loss of thought or body control, visual hallucinations or pseudo-hallucinations, synesthesia, changed meaning of percepts, facilitated recollection or imagination. On an Adjective Mood rating scale, the following measurements were significantly increased: self-confidence, heightened mood, apprehension-anxiety, thoughtfulness-contemplativeness, extroversion, dazed state, sensitivity and emotional excitation. In January 2001, an overview of the subjective side effects of MDMA based on clinical research conducted over several years involving 74 healthy volunteers. The researchers found a number of common side effects, and many of the effects seemed to occur in different amounts based on the sex of the user. The top side effects reported were difficulty concentrating, jaw clenching, grinding of the teeth during sleep, lack of appetite, and dry mouth/thirst (all occurring in more than 50% of the 74 volunteers). They also measured some of the test subjects for blood pressure, heart rate, and body temperature against a placebo control, but no statistically significant changes were seen. A 2008 study found a slight but significant correlation of cognitive deficiency in MDMA users, but admitted these data may be confounded by other illicit drug use. The significant finding of the article was the serotonergic neurotoxicity in stacked doses and a lasting decrease in serotonin reuptake (SERT) binding. In rats, high doses and in high temperatures, serotonergic neurotoxicity is limited and dopaminergic neurotoxicity occurs. However, rats may not be a generalizable model for human neurotoxicity studies. A 2010 study found changes in EEG measured brain activity believed to confirm neurotoxicity to serotonergic neurotransomission systems, and noted that the recorded brain activity data were "in line with the observation of attentional and memory impairments in Ecstasy users with moderate to high misuse". However, a 2011 study found no signs of cognitive impairment due to MDMA use, and it did not decrease mental ability. The report also raised concerns that previous methods used to conduct that research on the drug had been flawed, and the experiments overstated the cognitive differences between users and nonusers. Effects reported by some users once the acute effects of MDMA have worn off include: A slang term given to the depressive period following MDMA consumption is Tuesday Blues (or "Suicide Tuesday"), referring to the low mood that can be experienced midweek by depleted serotonin levels following MDMA use on the previous Friday or Saturday when raves or dance concerts were frequently scheduled. Some users reported consuming 5-HTP, L-tryptophan and vitamins the day after use can reduce the depressive effect by replenishing serotonin levels (magnesium supplements are also used prior to or during use, in an attempt to prevent jaw/muscle clenching). Upon overdose, the potentially serious serotonin syndrome, stimulant psychosis, and/or hypertensive crisis, among other dangerous adverse reactions, may come to prominence, the symptoms of which can include: Some studies indicate repeated recreational users of MDMA have increased rates of depression and anxiety, even after quitting the drug. Other meta analyses have reported possibility of impairment of executive functioning. Despite these findings, many factors, including total lifetime MDMA consumption, the duration of abstinence between uses, dosage, the environment of use, multiple drug use/abuse, quality of mental health, various lifestyle choices, and predispositions to develop clinical depression and other disorders, have made the results of many studies difficult to verify. A study that attempted to eliminate these confounding factors found few differences in the cognitive functioning of MDMA-using ravers versus non-MDMA-using ravers, "In a study designed to minimize limitations found in many prior investigations, we failed to demonstrate marked residual cognitive effects in ecstasy users. This finding contrasts with many previous findings-including our own-and emphasizes the need for continued caution in interpreting field studies of cognitive function in illicit ecstasy users." MDMA use has been occasionally associated with liver damage, excessive wear of teeth, and (very rarely) hallucinogen persisting perception disorder. Short-term physical health risks of MDMA consumption include hyperthermia, and hyponatremia. Continuous activity without sufficient rest or rehydration may cause body temperature to rise to dangerous levels, and loss of fluid via excessive perspiration puts the body at further risk as the stimulatory and euphoric qualities of the drug may render the user oblivious to their energy expenditure for quite some time. Diuretics such as alcohol may exacerbate these risks further.][ MDMA causes a reduction in the concentration of serotonin transporters in the brain. The rate at which the brain recovers from serotonergic changes is unclear. One study demonstrated lasting serotonergic changes in some animals exposed to MDMA. Other studies have suggested that the brain may recover from serotonergic damage. Some studies show MDMA may be neurotoxic in humans. Other studies, however, suggest that any potential brain damage may be at least partially reversible following prolonged abstinence from MDMA. Depression and deficits in memory have been shown to occur more frequently in long-term MDMA users. However, some recent studies have suggested MDMA use may not be associated with chronic depression. One study on MDMA toxicity, by George A. Ricaurte of Johns Hopkins School of Medicine, which claimed a single recreational dose of MDMA could cause Parkinson's disease in later life due to severe dopaminergic stress, was actually retracted by Ricaurte himself after he discovered his lab had administered not MDMA but methamphetamine, which is known to cause dopaminergic changes similar to the serotonergic changes caused by MDMA. Ricaurte blamed this mistake on a labeling error by the chemical supply company that sold the material to his lab, but the supply company responded there was no evidence of a labeling error on their end. Most studies have found the levels of the dopamine transporter (or other markers of dopamine function) in MDMA users deserve further study or are normal. Several studies have indicated a possible mechanism for neurotoxicity of a metabolite of MDMA, through the reaction of alpha-methyldopamine, a principal metabolite, and glutathione, the major antioxidant in the human body. One possible product of this reaction, 2,5-bis-(glutathion-S-yl)-alpha-methyldopamine, has been demonstrated to produce the same toxic effects observed in MDMA, while MDMA, and alpha-methyldopamine themselves have been shown to be non-neurotoxic. It is, however, impossible to avoid the metabolism of MDMA in the body, and the production of this toxic metabolite. Some studies have demonstrated possible ways to minimize the production of this particular metabolite, though evidence at this point is sparse at best. Another concern associated with MDMA use is toxicity from chemicals other than MDMA in ecstasy tablets. Due to its near-universal illegality, the purity of a substance sold as ecstasy is unknown to the typical user. The MDMA content of tablets varies widely between regions and different brands of pills and fluctuates somewhat each year. Pills may contain other active substances meant to stimulate in a way similar to MDMA, such as amphetamine, mephedrone, methamphetamine, ephedrine, caffeine, all of which may be comparatively cheap to produce and can help to boost overall profits. In some cases, tablets sold as ecstasy do not even contain any MDMA. Instead they may contain an assortment of undesirable drugs and substances, such as paracetamol, ibuprofen, talcum powder, etc. A number of deaths have been attributed to -methoxyamphetamine (PMA)para, a hallucinogenic amphetamine, being sold as ecstasy. PMA is unique in its ability to quickly elevate body temperature and heart rate at relatively low doses, especially in comparison to MDMA. Hence, users believing they are consuming two 120-mg pills of MDMA could actually be consuming a dose of PMA that is potentially lethal, depending on the purity of the pill. Not only does PMA cause the release of serotonin, but it also acts as a monoamine oxidase inhibitor. When combined with an MDMA or an MDMA-like substance, serotonin syndrome can result. Combining MAO inhibitors with certain legal prescription and over-the-counter medications can also lead to (potentially fatal) serotonin syndrome. The UK study placed great weight on the risk for acute physical harm, the propensity for physical and psychological dependency on the drug, and the negative familial and societal impacts of the drug. They did not evaluate or rate the negative impact of 'ecstasy' on the cognitive health of ecstasy users, e.g., impaired memory and concentration. Based on these factors, the study placed MDMA at number 18 in the list of 20 harmful drugs. David Nutt, a former chairman of the UK Advisory Council on the Misuse of Drugs, stated in the Journal of Psychopharmacology in January 2009, that 'ecstasy' use compared favorably with horse riding in terms of risk, with the drug leading to around 30 deaths a year in the UK compared to about 10 from horse riding, and "acute harm to person" occurring in about one in 10,000 episodes of 'ecstasy' use compared to about one in 350 episodes of horse riding. Dr. Nutt noted the lack of a balanced risk assessment in public discussions of MDMA: The general public, especially the younger generation, are disillusioned with the lack of balanced political debate about drugs. This lack of rational debate can undermine the trust in government in relation to drug misuse and thereby undermining the government's message in public information campaigns. The media in general seem to have an interest in scare stories about illicit drugs, though there are some exceptions (Horizon, 2008). A telling review of 10-year media reporting of drug deaths in Scotland illustrates the distorted media perspective very well (Forsyth, 2001). During this decade, the likelihood of a newspaper reporting a death from paracetamol was in [sic] per 250 deaths, for diazepam it was 1 in 50, whereas for amphetamine it was 1 in 3 and for ecstasy every associated death was reported. A spokesperson for the ACMD said, "The recent article by Professor David Nutt published in the Journal of Psychopharmacology was done in respect of his academic work and not as chair of the ACMD." The most carefully designed study so far, compared the effect on cognitive skills in 52 'ecstasy' users against 59 very closely matched nonusers. The study eliminated potential confounding factors such as the use of other drugs and history of drug use. The study found no short- or long-term differences in cognitive skills in the test group (users) versus the control group (nonusers). A number of reported potentially dangerous possible interactions occur between MDMA and other drugs, including serotonergic drugs. Several cases have been reported of death in individuals who ingested MDMA while taking ritonavir (Norvir), which inhibits multiple CYP450 enzymes. Toxicity or death has also been reported in people who took MDMA in combination with certain monoamine oxidase inhibitors, such as phenelzine (Nardil), tranylcypromine (Parnate), or moclobemide (Aurorix, Manerix). Conversely, BMAO inhibitors such as selegiline (Deprenyl; Eldepryl, Zelapar, Emsam) do not seem to carry these risks when taken at selective doses, and have been used to completely block neurotoxicity in rats. Commercial sassafras oil generally is a byproduct of camphor production in Asia or comes from related trees in Brazil. Safrole is a precursor for the clandestine manufacture of MDMA, and as such, its transport is monitored internationally. Roots of Sassafras can also be steeped to make tea and were used in the flavoring of traditional root beer until being banned for mass production by the FDA. Laboratory animals that were given oral doses of sassafras tea or sassafras oil that contained large doses of safrole developed permanent liver damage or various types of cancer. In humans, liver damage can take years to develop, and it may not have obvious signs.][ While sassafras oil is an important ingredient in clandestine manufacture of MDMA, MDMA itself does not contain any sassafras oil. Safrole, a colorless or slightly yellow oily liquid, extracted from the root-bark or the fruit of the sassafras tree is the primary precursor for all manufacture of MDMA. There are numerous synthetic methods available in the literature to convert safrole into MDMA via different intermediates. One common route is via the MDP2P (3,4-methylenedioxyphenyl-2-propanone, also known as piperonyl acetone) intermediate, which can be produced in at least two different ways. One method is to isomerize safrole to isosafrole in the presence of a strong base, and then oxidize isosafrole to MDP2P. Another, reportedly better,][ method is to make use of the Wacker process to oxidize safrole directly to the MDP2P (3,4-methylenedioxy phenyl-2-propanone) intermediate. This can be done with a palladium catalyst. Once the MDP2P intermediate has been prepared, a reductive amination leads to MDMA, a racemate {1:1 mixture of (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-methylpropan-2-amine and (S)-1-(benzo[d][1,3]dioxol-5-yl)-N-methylpropan-2-amine}. Another method for the synthesis of racemic MDMA is addition of hydrogen bromide to safrole and reaction of the adduct with methylamine. Safrole is not required for MDMA production, and other precursor chemicals are often used instead, for example piperonal. Relatively small quantities of essential oil are required to make large amounts of MDMA. The essential oil of Ocotea cymbarum typically contains between 80 and 94% safrole. This would allow 500 ml of the oil, which retails at between $20 and $100, to be used to produce between 150 and 340 grams of MDMA. MDMA acts as a releasing agent of serotonin, norepinephrine, and dopamine. It enters neurons via carriage by the monoamine transporters. Once inside, MDMA inhibits the vesicular monoamine transporter, which results in increased concentrations of serotonin, norepinephrine, and dopamine in the cytoplasm, and induces their release by reversing their respective transporters through a process known as phosphorylation. MDMA has been identified as a potent agonist of TAAR1, a newly discovered GPCR important for regulation of monoaminergic systems in the brain. Activation of TAAR1 increases cAMP production via adenylyl cyclase activation and inhibits transporter function. These effects increase monoamine efflux and prolong the amount of time monoamines remain in the synapse. It also acts as a weak 15-HT and receptor25-HT agonist, and its more efficacious metabolite MDA likely augments this action. MDMA's unusual entactogenic effects have been hypothesized to be, at least partly, the result of indirect oxytocin secretion via activation of the serotonin system. Oxytocin is a hormone released following events such as hugging, orgasm, and childbirth, and is thought to facilitate bonding and the establishment of trust. Based on studies in rats, MDMA is believed to cause the release of oxytocin, at least in part, by both directly and indirectly agonizing the serotonin receptor1A5-HT. A placebo-controlled study in 15 human volunteers found 100 mg MDMA increased blood levels of oxytocin, and the amount of oxytocin increase was correlated with the subjective prosocial effects of MDMA. Three neurobiological mechanisms for the therapeutic effects of MDMA have been suggested: "1) MDMA increases oxytocin levels, which may strengthen the therapeutic alliance; 2) MDMA increases ventromedial prefrontal activity and decreases amygdala activity, which may improve emotional regulation and decrease avoidance, and 3) MDMA increases norepinephrine (NE) release and circulating cortisol levels, which may facilitate emotional engagement and enhance extinction of learned fear associations." MDMA reaches maximal concentrations in the blood stream between 1.5 and 3 hr after ingestion. It is then slowly metabolized and excreted, with levels of MDMA and its metabolites decreasing to half their peak concentration over approximately 8 hours. Thus, there are still high MDMA levels in the body when the experiential effects have mostly ended, indicating acute tolerance has developed to the actions of MDMA. Taking additional supplements of MDMA at this point, therefore, produces higher concentrations of MDMA in the blood and brain than might be expected based on the perceived effects. Metabolites of MDMA that have been identified in humans include 3,4-methylenedioxyamphetamine (MDA), 4-hydroxy-3-methoxy-methamphetamine (HMMA), 4-hydroxy-3-methoxyamphetamine (HMA), 3,4-dihydroxyamphetamine (DHA) (also called alpha-methyldopamine (α-Me-DA)), 3,4-methylenedioxyphenylacetone (MDP2P), and 3,4-Methylenedioxy-N-hydroxyamphetamine (MDOH). The contributions of these metabolites to the psychoactive and toxic effects of MDMA are an area of active research. Sixty-five percent of MDMA is excreted unchanged in the urine (in addition, 7% is metabolized into MDA) during the 24 hours after ingestion. MDMA is known to be metabolized by two main metabolic pathways: (1) O-demethylenation followed by -methyltransferaseOcatechol- (COMT)-catalyzed methylation and/or glucuronide/sulfate conjugation; and (2) N-dealkylation, deamination, and oxidation to the corresponding benzoic acid derivatives conjugated with glycine. The metabolism may be primarily by cytochrome P450 (CYP450) enzymes (CYP2D6 (in humans, but CYP2D1 in mice), and CYP3A4) and COMT. Complex, nonlinear pharmacokinetics arise via autoinhibition of CYP2D6 and CYP2D8, resulting in zeroth order kinetics at higher doses. It is thought that this can result in sustained and higher concentrations of MDMA if the user takes consecutive doses of the drug. Because the enzyme CYP2D6 is deficient or totally absent in some people, it was once hypothesized that these people might have elevated risk when taking MDMA. However, there is still no evidence for this theory and available evidence argues against it. It is now thought that the contribution of CYP2D6 to MDMA metabolism in humans is less than 30% of the metabolism. Indeed, an individual lacking CYP2D6 was given MDMA in a controlled clinical setting and a larger study gave MDMA to healthy volunteers after inhibiting CYP2D6 with paroxetine. Lack of the enzyme caused a modest increase in drug exposure and decreases in some metabolites, but physical effects did not appear appreciably elevated. While there is little or no evidence that low CYP2D6 activity increases risks from MDMA, it is likely that MDMA-induced CYP2D inhibition will increase risk of those prescription drugs that are metabolized by this enzyme. MDMA-induced CYP2D inhibition appears to last for up to a week after MDMA exposure. MDMA and metabolites are primarily excreted as conjugates, such as sulfates and glucuronides. MDMA is a chiral compound and has been almost exclusively administered as a racemate. However, the two enantiomers have been shown to exhibit different kinetics. (S)-MDMA is more effective in eliciting 5-HT, NE, and DA release, while (D)-MDMA is overall less effective, and more selective for 5-HT and NE release (having only a very faint efficacy on DA release). The disposition of MDMA may also be stereoselective, with the S-enantiomer having a shorter elimination half-life and greater excretion than the R-enantiomer. Evidence suggests that the area under the blood plasma concentration versus time curve (AUC) was two to four times higher for the (R)-enantiomer than the (S)-enantiomer after a 40 mg oral dose in human volunteers. Likewise, the plasma half-life of (R)-MDMA was significantly longer than that of the (S)-enantiomer (5.8 ± 2.2 hours vs 3.6 ± 0.9 hours). However, because MDMA excretion and metabolism have nonlinear kinetics, the half-lives would be higher at more typical doses (100 mg is sometimes considered a typical dose). Given as the racemate MDMA has a half-life of around 8 hours. MDMA and MDA may be quantitated in blood, plasma or urine to monitor for use, confirm a diagnosis of poisoning or assist in the forensic investigation of a traffic or other criminal violation or a sudden death. Some drug abuse screening programs rely on hair, saliva, or sweat as specimens. Most commercial amphetamine immunoassay screening tests cross-react significantly with MDMA or its major metabolites, but chromatographic techniques can easily distinguish and separately measure each of these substances. The concentrations of MDA in the blood or urine of a person who has taken only MDMA are, in general, less than 10% those of the parent drug. MDMA was first synthesized in 1912 by Merck chemist Anton Köllisch. At the time, Merck was interested in developing substances that stopped abnormal bleeding. Merck wanted to evade an existing patent, held by Bayer, for one such compound: hydrastinine. At the behest of his superiors Walther Beckh and Otto Wolfes, Köllisch developed a preparation of a hydrastinine analogue, methylhydrastinine. MDMA was an intermediate compound in the synthesis of methylhydrastinine, and Merck was not interested in its properties at the time. On 24 December 1912, Merck filed two patent applications that described the synthesis of MDMA and its subsequent conversion to methylhydrastinine. Merck records indicate that its researchers returned to the compound sporadically. In 1927, Max Oberlin studied the pharmacology of MDMA and observed that its effects on blood sugar and smooth muscles were similar to ephedrine's. Researchers at Merck conducted experiments with MDMA in 1952 and 1959. In 1953 and 1954, the United States Army commissioned a study of toxicity and behavioral effects in animals of injected mescaline and several analogues, including MDMA. The Army experimented with MDMA as an interrogation tool in Project MKUltra. These originally classified investigations were declassified and published in 1973. The first scientific paper on MDMA appeared in 1958 in Yakugaku Zasshi, the Journal of the Pharmaceutical Society of Japan. In this paper, Yutaka Kasuya described the synthesis of MDMA, a part of his research on antispasmodics. MDMA was being used recreationally in the United States by 1970. In the mid-1970s, Alexander Shulgin, then at University of California, Berkeley, heard from his students about unusual effects of MDMA; among others, the drug had helped one of them to overcome his stutter. Intrigued, Shulgin synthesized MDMA and tried it himself in 1976. Two years later, he and David E. Nichols published the first report on the drug's psychotropic effect in humans. They described "altered state of consciousness with emotional and sensual overtones" that can be compared "to marijuana, and to psilocybin devoid of the hallucinatory component". Shulgin took to occasionally using MDMA for relaxation, referring to it as "my low-calorie martini", and giving the drug to his friends, researchers, and other people whom he thought could benefit from it. One such person was psychotherapist Leo Zeff, who had been known to use psychedelics in his practice. Zeff was so impressed with the effects of MDMA that he came out of his semi-retirement to proselytize for it. Over the following years, Zeff traveled around the U.S. and occasionally to Europe, training other psychotherapists in the use of MDMA. Among underground psychotherapists, MDMA developed a reputation for enhancing communication during clinical sessions, reducing patients' psychological defenses, and increasing capacity for therapeutic introspection. In the early 1980s in the U.S., MDMA rose to prominence as "Adam" in trendy nightclubs and gay dance clubs in the Dallas area. From there, use spread to raves in major cities around the country,][ and then to mainstream society. The drug was first proposed for scheduling by the Drug Enforcement Administration (DEA) in July 1984 and was classified as a Schedule I controlled substance in the U.S. on 31 May 1985. In the late 1980s MDMA, known by that time as "ecstasy", began to be widely used in the UK and other parts of Europe, becoming an integral element of rave culture and other psychedelic-influenced music scenes. Spreading along with rave culture, illicit MDMA use became increasingly widespread among young adults in universities and later in high schools. MDMA became one of the four most widely used illicit drugs in the U.S., along with cocaine, heroin, and cannabis. According to some estimates as of 2004, only marijuana attracts more first time users in the U.S. After MDMA was criminalized, most medical use stopped, although some therapists continued to prescribe the drug illegally. Later Charles Grob initiated an ascending-dose safety study in healthy volunteers. Subsequent legally approved MDMA studies in humans have taken place in the U.S. in Detroit (Wayne State University), Chicago (University of Chicago), San Francisco (UCSF and California Pacific Medical Center), Baltimore (NIDA–NIH Intramural Program), and South Carolina, as well as in Switzerland (University Hospital of Psychiatry, Zürich), the Netherlands (Maastricht University), and Spain (Universitat Autònoma de Barcelona). In 2010, the BBC reported that use of MDMA had decreased in the UK in previous years. This is thought to be due to increased seizures and decreased production of the precursor chemicals used to manufacture MDMA. Unwitting substitution with other drugs, such as mephedrone and methamphetamine, as well as legal alternatives to MDMA, such as BZP, MDPV, and methylone, are also thought to have contributed to its decrease in popularity. MDMA is legally controlled in most of the world under the UN Convention on Psychotropic Substances and other international agreements, although exceptions exist for research and limited medical use. In general, the unlicensed use, sale or manufacture of MDMA are all criminal offenses. MDMA was made illegal in 1977 by a modification order to the existing Misuse of Drugs Act 1971. Although MDMA was not named explicitly in this legislation, the order extended the definition of Class A drugs to include various ring-substituted phenethylamines, thereby making it illegal to sell, buy, or possess the drug without a licence. Penalties include a maximum of seven years and/or unlimited fine for possession; life and/or unlimited fine for production or trafficking. See list of drugs illegal in the UK for more information. In February 2009 an official independent scientific advisory board to the UK government recommended that MDMA be re-classified to Class B, but this recommendation was immediately rejected by the government. This 2009 report on MDMA stated: In 2000, the UK Police Foundation issued the Runciman Report, which reviewed the medical and social harms of MDMA and recommended: "Ecstasy and related compounds should be transferred from Class A to Class B." In 2002, the Home Affairs Committee of the UK House of Commons, issued a report, The Government's Drugs Policy: Is it working?, which also recommended that MDMA should be reclassified to a Class B drug. The UK government rejected both recommendations, saying that re-classification of MDMA would not be considered without a recommendation from the Advisory Council on the Misuse of Drugs, the official UK scientific advisory board on drug abuse issues. In February 2009, the UK Advisory Council on the Misuse of Drugs issued A review of MDMA ('ecstasy'), its harms and classification under the Misuse of Drugs Act 1971, which recommended that MDMA be re-classified in the UK from a class A drug to a class B drug. From the Discussion section of the ACMD report on MDMA: Physical harms: (10.2) Use of MDMA is undoubtedly harmful. High doses may lead to death: by direct toxicity, in situations of hyperthermia/dehydration, excessive water intake, or for other reasons. However, fatalities are relatively low given its widespread use, and are substantially lower than those due to some other Class A drugs, particularly heroin and cocaine. Although it is no substitute for abstinence, the risks can be minimised by following advice such as drinking appropriate amounts of water (see Annex E). (10.3) Some people experience acute medical consequences as a result of MDMA use, which can lead to hospital admission, sometimes with the requirement for intensive care. MDMA poisonings are not currently increasing in number and are less frequent than episodes due to cocaine. (10.4) MDMA appears not to have a high propensity for dependence or withdrawal reactions, although a number of users seek help through treatment services. (10.5) MDMA appears to have little acute or enduring effect on the mental health of the average user, and, unlike amphetamines and cocaine, it is seldom implicated in significant episodes of paranoia. (10.6) There is at the present time little evidence of longer-term harms to the brain in terms of either its structure or its function. However, there is evidence for some small decline in a variety of domains, including verbal memory, even at low cumulative dose. The magnitude of such deficits appears to be small and their clinical relevance is unclear. The evidence shows that MDMA has been misused in the UK for 20 years, but it should be noted that long-term effects of use cannot be ruled out. (10.7) Overall, the ACMD judges that the physical harms of MDMA more closely equate with those of amphetamine than of heroin or cocaine. Societal harms: (10.8) MDMA use seems to have few societal effects in terms of intoxication-related harms or social disorder. However, the ACMD notes the very small proportion of cases where ‘ecstasy’ use has been implicated in sexual assault. (10.9) Disinhibition and impulsive, violent or risky behaviours are not commonly seen under the influence of MDMA, unlike with cocaine, amphetamines, heroin and alcohol. (10.10) The major issue for law enforcement is ‘ecstasy's’ position, alongside other Class A drugs, as a commodity favoured by organised criminal groups. It is therefore generally associated with a range of secondary harms connected with the trafficking of illegal drugs. The UK Home Office rejected the recommendation of its independent scientific advisory board to downgrade MDMA to Class B, "saying it is not prepared to send a message to young people that it takes ecstasy less seriously". The government's veto was criticized in scientific publications. Colin Blakemore, Professor of Neuroscience, Oxford, stated in the British Medical Journal, "The government's decisions compromise its commitment to evidence based policy". Also in response, an editorial in the New Scientist noted "A much larger percentage of people suffer a fatal acute reaction to peanuts than to MDMA.... Sadly, perspective is something that is generally lacking in the long and tortuous debate over illegal drugs." In the U.S., MDMA was legal and unregulated until 31 May 1985, at which time it was emergency scheduled to DEA Schedule I, for drugs deemed to have no medical uses and a high potential for abuse. During DEA hearings to schedule MDMA, most experts recommended DEA Schedule III prescription status for the drug, due to beneficial usage of MDMA in psychotherapy. The Administrative Law Judge (ALJ) overseeing the hearings, Francis Young, also recommended that MDMA be placed in Schedule III. The DEA however classified MDMA as Schedule I. However, in Grinspoon v. Drug Enforcement Administration, 828 F.2d 881 (1st Cir. 1987), the First Circuit Court of Appeals remanded the scheduling determination for reconsideration by the DEA. MDMA was temporarily removed from Schedule I. Ultimately, in 1988, the DEA re-evaluated its position on remand and subsequently placed MDMA into Schedule I of the Controlled Substances Act. In 2001, responding to a mandate from the U.S. Congress, the U.S. Sentencing Commission, resulted in an increase in the penalties for MDMA by nearly 3,000%. The increase in penalties was opposed by the Federation of American Scientists. The increase makes 1 gram of MDMA (four pills at 250 mg per pill's total weight regardless of purity, standard for Federal charges) equivalent to 1 gram of heroin (approximately fifty doses) or 2.2 pounds (1.00 kg) of cannabis for sentencing purposes at the federal level. See also the RAVE Act of 2003. In a 2011 federal court hearing the American Civil Liberties Union successfully argued that the sentencing guideline for MDMA/ecstasy is based on outdated science, leading to excessive prison sentences. The Expert Committee on the List (Expertcommissie Lijstensystematiek Opiumwet) of the Netherlands issued a report in June 2011 which discussed the evidence for harm and the legal status of MDMA. From the English-language summary: As regards MDMA, better known as XTC, the committee concludes that investigations show that damage to the health of the individual in the long term is less serious than was initially assumed. But the extent of the illegal production and involvement of organised crime leads to damage to society, including damage to the image of the Netherlands abroad. This argues in favour of maintaining MDMA on List I. The Committee noted that research had found the health risks of MDMA were less serious than previously assumed (citing the 2009 UK ACMD report), and so they considered moving MDMA out of the Dutch List I ('hard drugs') to List II ('soft drugs' such as cannabis), but this was not acceptable because the criminal black market would continue to produce all the MDMA. Note, the Committee did not discuss permitting legally regulated production of MDMA for non-medical use because this is not allowed under the UN 1971 Convention on Psychotropic Substances (See Drug decriminalization vs. legalization). Listed as a Schedule 1 as it is an analogue of amphetamine. The CDSA was updated as a result of the Safe Streets Act changing amphetamines from Schedule 3 to Schedule 1. In 1985 the World Health Organization's Expert Committee on Drug Dependence recommended that MDMA be placed in Schedule I of the 1971 Convention on Psychotropic Substances, despite noting: The decision to recommend scheduling of MDMA was not unanimous: The 1971 Convention has a provision in Article 7(a) that allows use of Schedule I drugs for "scientific and very limited medical purposes." The committee's report stated: Demand for safrole, a substance used in the manufacture of MDMA, is causing rapid and illicit harvesting of the Cinnamomum parthenoxylon tree in Southeast Asia, in particular the Cardamom Mountains in Cambodia. Demand for safrole, mostly for industrial use but also for MDMA production, depletes around 500,000 trees per year in China, Brazil, Cambodia, Vietnam, and Laos.][ In 2008 alone, Australian and Cambodian authorities blocked and destroyed the export of 33 tons of safrole, capable of producing 245 million ecstasy tablets with a street value of 7.6 billion dollars. Only a small proportion of illicitly harvested safrole is going toward MDMA production, as over 90% of the global safrole supply (approx 2000 metric tons per year) is used to manufacture pesticides, fragrances, and other chemicals. Sustainable harvesting of safrole is possible from leaves and sticks of certain plants. Safrole is not required for MDMA production, and other precursor chemicals are often used instead. The European Monitoring Centre for Drugs and Drug Addiction notes that, although there are some reports of tablets being sold for as little as €1, most countries in Europe now report typical retail prices in the range of €3 to €9 per tablet. The United Nations Office on Drugs and Crime claimed in its 2008 World Drug Report that typical U.S. retail prices are US$20 to $25 per tablet, or from $3 to $10 per tablet if bought in batches. MDMA is expensive in Australia, costing A$20–A$30 per tablet. In terms of purity data for Australian MDMA, the average is around 34%, ranging from less than 1% to about 85%. The majority of tablets contain 70–85 mg of MDMA. Most MDMA enters Australia from the Netherlands, the UK, Asia, and the U.S. Notes
A form of amnesia, selective memory loss is a rare side effect of head injuries when the victim loses certain parts of his/her memory. Not much is known because this only results when certain areas of the head are traumatized. Common elements that may be forgotten: relationships, special talents (e.g.: juggling, whistling, instrumental talents, etc.), living area, abilities in certain areas (e.g.: a new gymnast forgetting she can not cartwheel yet), and events such as concerts, shows, traumatic events (e.g.: a death/suicide of a loved one or attempt on one's own life). More research is being done into elements that are forgotten and what areas of the skull must be traumatized to cause SML. SML is also used as a joke term by proctors who claims they are affected by such and thus, unable to help examinees with their exam.


Mental process or mental function are terms often used interchangeably for all the things that we can do with our mind, for instance perception, introspection, memory, creativity, imagination, idea, belief, reasoning, volition, and emotion. Sometimes the term cognitive process is used instead of mental process; however, the term cognitive tends to have specific implications.

A specific instance of engaging in a cognitive process is a mental event. The event of perceiving something is, of course, different from the entire process, or capacity of perception—one's ability to perceive things. In other words, an instance of perceiving is different from the ability that makes those instances possible.

Religious ecstasy is an altered state of consciousness characterized by greatly reduced external awareness and expanded interior mental and spiritual awareness, frequently accompanied by visions and emotional (and sometimes physical) euphoria. Although the experience is usually brief in time, there are records of such experiences lasting several days or even more, and of recurring experiences of ecstasy during one's lifetime. Subjective perception of time, space and/or self may strongly change or disappear during ecstasy.

The adjective "religious" means that the experience occurs in connection with religious activities or is interpreted in context of a religion. Marghanita Laski writes in her study "Ecstasy in Religious and Secular Experiences," first published in 1961:

Spirituality Ecstasy MDMA Memory

Prospective memory is a form of memory that involves remembering to perform a planned action or intention at the appropriate time. Prospective memory tasks are highly prevalent in daily life and range from relatively simple tasks to extreme life-or-death situations. Examples of simple tasks include remembering to put the toothpaste cap back on, remembering to reply to an email or remembering to return a rented movie. Examples of highly important situations include a patient remembering to take medication or a pilot remembering to perform specific safety procedures during a flight.

In contrast to prospective memory, retrospective memory involves memory of people, events and words that have been encountered in the past. Prospective memory and retrospective memory differ in the fact that retrospective memory emphasizes memory for events that have previously occurred, while prospective memory focuses on intended future events and is thus considered a form of memory for the future. Retrospective memory involves the memory of what we know, containing informational content; prospective memory focuses on when to act, without focusing on informational content. There is some evidence demonstrating the role of retrospective memory in the proper performance of prospective memory, but this role seems to be relatively small.


Human behavior refers to the range of behaviors exhibited by humans and which are influenced by culture, attitudes, emotions, values, ethics, authority, rapport, hypnosis, persuasion, coercion and/or genetics.

The behavior of people (and other organisms or even mechanisms) falls within a range with some behavior being common, some unusual, some acceptable, and some outside acceptable limits. In sociology, behavior in general is characterised as having no meaning, being not directed at other people, and thus is the most basic human action. Behavior in this general sense should not be mistaken with social behavior, which is a more advanced action, as social behavior is behavior specifically directed at other people. The acceptability of behavior depends heavily upon social norms and is regulated by various means of social control. Human behavior is studied by the specialised academic disciplines of psychiatry, psychology, social work, sociology, economics, and anthropology.

Amphetamines Health Medical Pharma Social Issues

In journalism, a human interest story is a feature story that discusses a person or people in an emotional way. It presents people and their problems, concerns, or achievements in a way that brings about interest, sympathy or motivation in the reader or viewer.

Human interest stories may be "the story behind the story" about an event, organization, or otherwise faceless historical happening, such as about the life of an individual soldier during wartime, an interview with a survivor of a natural disaster, a random act of kindness or profile of someone known for a career achievement.


Related Websites:

Terms of service | About