Question:

Do unsaturated or saturated fats give heart disease?

Answer:

Saturated fats are the cause of hearth disease. Reduce it, but not abort it because it enhances your body immune system. AnswerParty!

More Info:

Saturated fat is fat that consists of triglycerides containing only saturated fatty acids. Saturated fatty acids have no double bonds between the individual carbon atoms of the fatty acid chain. That is, the chain of carbon atoms is fully "saturated" with hydrogen atoms. There are many kinds of naturally occurring saturated fatty acids, which differ mainly in number of carbon atoms, from 3 carbons (propionic acid) to 36 (hexatriacontanoic acid).

Various fats contain different proportions of saturated and unsaturated fat. Examples of foods containing a high proportion of saturated fat include animal fats such as cream, cheese, butter, and ghee; suet, tallow, lard, and fatty meats; as well as certain vegetable products such as coconut oil, cottonseed oil, palm kernel oil, chocolate, and many prepared foods.]unreliable source?[

Saturated fat is fat that consists of triglycerides containing only saturated fatty acids. Saturated fatty acids have no double bonds between the individual carbon atoms of the fatty acid chain. That is, the chain of carbon atoms is fully "saturated" with hydrogen atoms. There are many kinds of naturally occurring saturated fatty acids, which differ mainly in number of carbon atoms, from 3 carbons (propionic acid) to 36 (hexatriacontanoic acid).

Various fats contain different proportions of saturated and unsaturated fat. Examples of foods containing a high proportion of saturated fat include animal fats such as cream, cheese, butter, and ghee; suet, tallow, lard, and fatty meats; as well as certain vegetable products such as coconut oil, cottonseed oil, palm kernel oil, chocolate, and many prepared foods.]unreliable source?[

Trans fats are a type of unsaturated fat which is uncommon in nature but can be created artificially.

Hydrocarbons are carbon atoms with hydrogen atoms attached to them. Fats (fatty acids) contain long hydrocarbon chains. The carbon atoms in the chain can be connected by single bonds or double bonds. A double carbon–carbon bond can be either across (trans) or bent (cis). In the vegetable and animal kingdoms, fatty acids generally have cis (as opposed to trans) unsaturations. In food production, liquid cis-unsaturated fats such as vegetable oils are catalytically hydrogenated to produce partially or completely saturated fats that melt at a desirable temperature (30–40 °C). Trans fats are an artificial contaminant introduced by an isomerization side reaction on the catalyst in partial hydrogenation.

Whether saturated fat is a risk factor for cardiovascular disease (CVD) is a question with numerous controversial views. Although most in the mainstream heart-health, government, and medical communities hold that saturated fat is a risk factor for CVD, some recent studies have produced conflicting results.

Medical, heart-health, and governmental authorities, such as the World Health Organization, the American Dietetic Association, the Dietitians of Canada, the British Dietetic Association, American Heart Association, the British Heart Foundation, the World Heart Federation, the British National Health Service, the United States Food and Drug Administration, and the European Food Safety Authority advise that saturated fat is a risk factor for cardiovascular disease (CVD).

According to the USDA, a low-fat diet – as the name implies – is a diet that consists of little fat, especially saturated fat and cholesterol, which are thought to lead to increased blood cholesterol levels and heart attack. It is important to know that dietary fat is needed for good health, as fats supply energy and fatty acids, in addition to supplying fat-soluble vitamins like A, D, E, and K.

In recent years the exact health benefits of a low-fat diet have been debated. A 2006 study published by the Journal of the American Medical Association concludes that a low-fat diet did not result in weight gain and did not reduce risk of colorectal or breast cancer among postmenopausal women. However, this study was criticized by several epidemiologists for its lack of validity (see "Criticisms" in the Women's Health Initiative article). Recently, the Nurses' Health Study from the Harvard School of Public Health reported from a Dietary Approaches to Stop Hypertension (DASH), and found that a diet "with high intake of fruits, vegetables, and whole grains, moderate intake of legumes, nuts, and low-fat dairy products, and low intake of red and processed meats and sodium, was significantly associated with lower risk of coronary heart disease and stroke in women." A 2002 Cochrane Review found low-fat diets to be no more effective than other weight loss diets in achieving lasting weight loss, but this review has since been withdrawn. Two newer studies concluded the same, published 2008.

Fat

Polyunsaturated fats are triglycerides in which the hydrocarbon tails constitutes polyunsaturated fatty acids (PUFA) (fatty acids possessing more than a single carbon–carbon double bond). "Unsaturated" refers to the fact that the molecules contain less than the maximum amount of hydrogen. These materials exist as cis or trans isomers depending on the geometry of the double bond.

Saturated fats have hydrocarbon chains which can be most readily aligned. The hydrocarbon chains in trans fats align more readily than those in cis fats, but less well than those in saturated fats. This means that, in general, the melting points of fats increase from cis to trans unsaturated and then to saturated. See the section on chemical structure of fats for more information.

Palm oil (also known as dendê oil, from Portuguese) is an edible vegetable oil derived from the mesocarp (reddish pulp) of the fruit of the oil palms, primarily the African oil palm Elaeis guineensis, and to a lesser extent from the American oil palm Elaeis oleifera and the maripa palm Attalea maripa.

Palm oil is naturally reddish in color because of a high beta-carotene content. It is not to be confused with palm kernel oil derived from the kernel of the same fruit, or coconut oil derived from the kernel of the coconut palm (Cocos nucifera). The differences are in color (raw palm kernel oil lacks carotenoids and is not red), and in saturated fat content: Palm mesocarp oil is 41% saturated, while Palm Kernel oil and Coconut oil are 81% and 86% saturated respectively

Coconut oil is an edible oil extracted from the kernel or meat of matured coconuts harvested from the coconut palm (Cocos nucifera). It has various applications in food, medicine, and industry. Because of its high saturated fat content it is slow to oxidize and, thus, resistant to rancidification, lasting up to two years without spoiling.

Many health organizations advise against the consumption of high amounts of coconut oil due to its high levels of saturated fat.

An unsaturated fat is a fat or fatty acid in which there is at least one double bond within the fatty acid chain. A fatty acid chain is monounsaturated if it contains one double bond, and polyunsaturated if it contains more than one double bond. Where double bonds are formed, hydrogen atoms are eliminated. Thus, a saturated fat has no double bonds, has the maximum number of hydrogens bonded to the carbons, and therefore is "saturated" with hydrogen atoms. In cellular metabolism, unsaturated fat molecules contain somewhat less energy (i.e., fewer calories) than an equivalent amount of saturated fat. The greater the degree of unsaturation in a fatty acid (i.e., the more double bonds in the fatty acid) the more vulnerable it is to lipid peroxidation (rancidity). Antioxidants can protect unsaturated fat from lipid peroxidation.

In biochemistry and nutrition, monounsaturated fats or MUFA (MonoUnsaturated Fatty Acid) are fatty acids that have one double bond in the fatty acid chain and all of the remainder of the carbon atoms in the chain are single-bonded. By contrast, polyunsaturated fatty acids have more than one double bond.

Fatty acids are long-chained molecules having an alkyl group at one end and a carboxylic acid group at the other end. Fatty acid viscosity (thickness) and melting temperature increases with decreasing number of double bonds; therefore, monounsaturated fatty acids have a higher melting point than polyunsaturated fatty acids (more double bonds) and a lower melting point than saturated fatty acids (no double bonds). Monounsaturated fatty acids are liquids at room temperature and semisolid or solid when refrigerated.

Cardiovascular disease (also called heart disease) is a class of diseases that involve the heart, the blood vessels (arteries, capillaries, and veins) or both.

Cardiovascular disease refers to any disease that affects the cardiovascular system, principally cardiac disease, vascular diseases of the brain and kidney, and peripheral arterial disease. The causes of cardiovascular disease are diverse but atherosclerosis and/or hypertension are the most common. Additionally, with aging come a number of physiological and morphological changes that alter cardiovascular function and lead to subsequently increased risk of cardiovascular disease, even in healthy asymptomatic individuals.

Cardiovascular disease (also called heart disease) is a class of diseases that involve the heart, the blood vessels (arteries, capillaries, and veins) or both.

Cardiovascular disease refers to any disease that affects the cardiovascular system, principally cardiac disease, vascular diseases of the brain and kidney, and peripheral arterial disease. The causes of cardiovascular disease are diverse but atherosclerosis and/or hypertension are the most common. Additionally, with aging come a number of physiological and morphological changes that alter cardiovascular function and lead to subsequently increased risk of cardiovascular disease, even in healthy asymptomatic individuals.

Coronary artery disease (CAD) also known as atherosclerotic heart disease, coronary heart disease, or ischemic heart disease (IHD), is the most common type of heart disease and cause of heart attacks. The disease is caused by plaque building up along the inner walls of the arteries of the heart, which narrows the arteries and reduces blood flow to the heart.

While the symptoms and signs of coronary artery disease are noted in the advanced state of disease, most individuals with coronary artery disease show no evidence of disease for decades as the disease progresses before the first onset of symptoms, often a "sudden" heart attack, finally arises. Symptoms of stable ischaemic heart disease include angina (characteristic chest pain on exertion) and decreased exercise tolerance. Unstable IHD presents itself as chest pain or other symptoms at rest, or rapidly worsening angina. The risk of artery narrowing increases with age, smoking, high blood cholesterol, diabetes, high blood pressure, and is more common in men and those who have close relatives with CAD. Other causes include coronary vasospasm, a spasm of the blood vessels of the heart, it is usually called Prinzmetal's angina.

Coronary artery disease (CAD) also known as atherosclerotic heart disease, coronary heart disease, or ischemic heart disease (IHD), is the most common type of heart disease and cause of heart attacks. The disease is caused by plaque building up along the inner walls of the arteries of the heart, which narrows the arteries and reduces blood flow to the heart.

While the symptoms and signs of coronary artery disease are noted in the advanced state of disease, most individuals with coronary artery disease show no evidence of disease for decades as the disease progresses before the first onset of symptoms, often a "sudden" heart attack, finally arises. Symptoms of stable ischaemic heart disease include angina (characteristic chest pain on exertion) and decreased exercise tolerance. Unstable IHD presents itself as chest pain or other symptoms at rest, or rapidly worsening angina. The risk of artery narrowing increases with age, smoking, high blood cholesterol, diabetes, high blood pressure, and is more common in men and those who have close relatives with CAD. Other causes include coronary vasospasm, a spasm of the blood vessels of the heart, it is usually called Prinzmetal's angina.

Coronary artery disease (CAD) also known as atherosclerotic heart disease, coronary heart disease, or ischemic heart disease (IHD), is the most common type of heart disease and cause of heart attacks. The disease is caused by plaque building up along the inner walls of the arteries of the heart, which narrows the arteries and reduces blood flow to the heart.

While the symptoms and signs of coronary artery disease are noted in the advanced state of disease, most individuals with coronary artery disease show no evidence of disease for decades as the disease progresses before the first onset of symptoms, often a "sudden" heart attack, finally arises. Symptoms of stable ischaemic heart disease include angina (characteristic chest pain on exertion) and decreased exercise tolerance. Unstable IHD presents itself as chest pain or other symptoms at rest, or rapidly worsening angina. The risk of artery narrowing increases with age, smoking, high blood cholesterol, diabetes, high blood pressure, and is more common in men and those who have close relatives with CAD. Other causes include coronary vasospasm, a spasm of the blood vessels of the heart, it is usually called Prinzmetal's angina.

Cardiology Atherosclerosis

Valvular heart disease is any disease process involving one or more of the valves of the heart (the aortic and mitral valves on the left and the pulmonary and tricuspid valves on the right). Valve problems may be congenital (inborn) or acquired (due to another cause later in life). Treatment may be with medication but often (depending on the severity) involves valve repair or replacement (insertion of an artificial heart valve). Specific situations include those where additional demands are made on the circulation, such as in pregnancy.

Hypertensive heart disease includes a number of complications of systemic arterial hypertension or high blood pressure that affect the heart. While there are several definitions of hypertensive heart disease in the medical literature, the term is most widely used in the context of the International Classification of Diseases (ICD) coding categories. The definition in the Tenth Revision of the International Classification of Diseases (ICD-10) includes heart failure and other cardiac complications of hypertension when a causal relationship between the heart disease and hypertension is stated or implied on the death certificate. According to ICD-10, hypertensive heart disease (I11), and its subcategories: hypertensive heart disease with heart failure (I11.0) and hypertensive heart disease without heart failure (I11.9) are distinguished from chronic rheumatic heart diseases (I05-I09), other forms of heart disease (I30-I52) and ischemic heart diseases (I20-I25). However, since high blood pressure is a risk factor for atherosclerosis and ischemic heart disease, death rates from hypertensive heart disease provide an incomplete measure of the burden of disease due to high blood pressure.

Rheumatic fever is an inflammatory disease that occurs following a Streptococcus pyogenes infection, such as streptococcal pharyngitis. Believed to be caused by antibody cross-reactivity that can involve the heart, joints, skin, and brain, the illness typically develops two to three weeks after a streptococcal infection. Acute rheumatic fever commonly appears in children between the ages of 6 and 15, with only 20% of first-time attacks occurring in adults. The illness is so named because of its similarity in presentation to rheumatism.

Heart failure (HF), often called congestive heart failure (CHF) or congestive cardiac failure (CCF), occurs when the heart is unable to provide sufficient pump action to maintain blood flow to meet the needs of the body. Heart failure can cause a number of symptoms including shortness of breath, leg swelling, and exercise intolerance. The condition is diagnosed by patient physical examination and confirmed with echocardiography. Blood tests help to determine the cause. Treatment depends on severity and cause of heart failure. In a chronic patient already in a stable situation, treatment commonly consists of lifestyle measures such as smoking cessation, light exercise, dietary changes, and medications. Sometimes, depending on etiology, it is treated with implanted devices (pacemakers or ventricular assist devices) and occasionally a heart transplant is required.

Common causes of heart failure include myocardial infarction and other forms of ischemic heart disease, hypertension, valvular heart disease, and cardiomyopathy. The term heart failure is sometimes incorrectly used for other cardiac-related illnesses, such as myocardial infarction (heart attack) or cardiac arrest, which can cause heart failure but are not equivalent to heart failure.

The immune system is a system of biological structures and processes within an organism that protects against disease. To function properly, an immune system must detect a wide variety of agents, from viruses to parasitic worms, and distinguish them from the organism's own healthy tissue.

Pathogens can rapidly evolve and adapt, and thereby avoid detection and neutralization by the immune system, however, multiple defense mechanisms have also evolved to recognize and neutralize pathogens. Even simple unicellular organisms such as bacteria possess a rudimentary immune system, in the form of enzymes that protect against bacteriophage infections. Other basic immune mechanisms evolved in ancient eukaryotes and remain in their modern descendants, such as plants and insects. These mechanisms include phagocytosis, antimicrobial peptides called defensins, and the complement system. Jawed vertebrates, including humans, have even more sophisticated defense mechanisms, including the ability to adapt over time to recognize specific pathogens more efficiently. Adaptive (or acquired) immunity creates immunological memory after an initial response to a specific pathogen, leading to an enhanced response to subsequent encounters with that same pathogen. This process of acquired immunity is the basis of vaccination.

The immune system is a system of biological structures and processes within an organism that protects against disease. To function properly, an immune system must detect a wide variety of agents, from viruses to parasitic worms, and distinguish them from the organism's own healthy tissue.

Pathogens can rapidly evolve and adapt, and thereby avoid detection and neutralization by the immune system, however, multiple defense mechanisms have also evolved to recognize and neutralize pathogens. Even simple unicellular organisms such as bacteria possess a rudimentary immune system, in the form of enzymes that protect against bacteriophage infections. Other basic immune mechanisms evolved in ancient eukaryotes and remain in their modern descendants, such as plants and insects. These mechanisms include phagocytosis, antimicrobial peptides called defensins, and the complement system. Jawed vertebrates, including humans, have even more sophisticated defense mechanisms, including the ability to adapt over time to recognize specific pathogens more efficiently. Adaptive (or acquired) immunity creates immunological memory after an initial response to a specific pathogen, leading to an enhanced response to subsequent encounters with that same pathogen. This process of acquired immunity is the basis of vaccination.

The adaptive immune system, also known as the acquired immune system or, more rarely, as the specific immune system, is composed of highly specialized, systemic cells and processes that eliminate or prevent pathogen growth. One of the two main immunity strategies found in vertebrates (the other being innate immunity), acquired immunity creates immunological memory after an initial response to a specific pathogen, leading to an enhanced response to subsequent encounters with that same pathogen. This process of acquired immunity is the basis of vaccination.

In acquired immunity, pathogen-specific receptors are "acquired" during the lifetime of the organism (whereas in innate immunity pathogen-specific receptors are already encoded in the germline)... The acquired response is said to be "adaptive" because it prepares the body's immune system for future challenges (though it can actually also be maladaptive when it results in autoimmunity).

Immunodeficiency

In biology, immunity is the state of having sufficient biological defences to avoid infection, disease, or other unwanted biological invasion. It is the capability of the body to resist harmful microbes from entering it. Immunity involves both specific and non-specific components. The non-specific components act either as barriers or as eliminators of wide range of pathogens irrespective of antigenic specificity. Other components of the immune system adapt themselves to each new disease encountered and are able to generate pathogen-specific immunity.

Innate immunity, or nonspecific immunity is the natural resistances with which a person is born. It provides resistances through several physical, chemical and cellular approaches. Microbes first encounter the epithelial layers, physical barriers that line skin and mucous membranes. Subsequent general defences include secreted chemical signals (cytokines), antimicrobial substances, fever, and phagocytic activity associated with the inflammatory responses. The phagocytes express cell surface receptors that can bind and respond to common molecular patterns expressed on the surface of invading microbes. Through these approaches, innate immunity can prevent the colonization, entry and spread of microbes.

The innate immune system, also known as non-specific immune system and first line of defense, comprises the cells and mechanisms that defend the host from infection by other organisms in a non-specific manner. This means that the cells of the innate system recognize and respond to pathogens in a generic way, but unlike the adaptive immune system (which is only found in vertebrates), it does not confer long-lasting or protective immunity to the host. Innate immune systems provide immediate defense against infection, and are found in all classes of plant and animal life.

The innate immune system is an evolutionarily older defense strategy, and is the dominant immune system found in plants, fungi, insects, and in primitive multicellular organisms.

"Humoral immunity" (also called the antibody-mediated system) is the aspect of immunity that is mediated by macromolecules (as opposed to cell-mediated immunity) found in extracellular fluids such as secreted antibodies, complement proteins and certain antimicrobial peptides. Humoral immunity is so named because it involves substances found in the humours, or body fluids.

The study of the molecular and cellular components that comprise the immune system, including their function and interaction, is the central science of immunology. The immune system is divided into a more primitive innate immune system, and acquired or adaptive immune system of vertebrates, each of which contains humoral and cellular components.

In computer science, artificial immune systems (AIS) are a class of computationally intelligent systems inspired by the principles and processes of the vertebrate immune system. The algorithms typically exploit the immune system's characteristics of learning and memory to solve a problem.

The mucosal immune system is that portion of the immune system which provides protection to an organism's various mucous membranes from invasion by potentially pathogenic microbes. It provides three main functions: protecting the mucus membrane against infection, preventing the uptake of antigens, microorganisms, and other foreign materials, and moderating the organism's immune response to that material.

At birth, the neonate's mucosal immune system is relatively undeveloped, but the colonization of intestinal flora accelerates its development.

Ocular immune system protects the eye from infection and regulates healing processes following injuries. The interior of the eye lacks lymph vessels but is highly vascularized, and many immune cells reside in the uvea, including mostly macrophages, dritic cells, and mast cells. These cells fight off intraocular infections, and intraocular inflammation can manifest as uveitis (including iritis) or retinitis. The cornea of the eye is immunologically a very special tissue. Its constant exposure to the exterior world means that it is vulnerable to a wide range of microorganisms while its moist mucosal surface makes the cornea particularly susceptible to attack. At the same time, its lack of vasculature and relative immune separation from the rest of the body makes immune defense difficult. Lastly, the cornea is a multifunctional tissue. It provides a large part of the eye’s refractive power, meaning it has to maintain remarkable transparency, but must also serve as a barrier to keep pathogens from reaching the rest of the eye, similar to function of the dermis and epidermis in keeping underlying tissues protected. Immune reactions within the cornea come from surrounding vascularized tissues as well as innate immune responsive cells that reside within the cornea.

The most important function of the cornea is to transmit and refract light so as to allow high-resolution images to be produced on the back of the retina. To do this, collagen within the cornea is highly ordered to be 30 nanometers in diameter and placed 60 nanometers apart so as to reduce light scatter. Furthermore, the tissue is not vascularized, and does not contain lymphoid cells or other defense mechanisms, apart from some dendritic cells (DC). Both of these factors necessitate the small number of cells within the cornea. However, this necessitates keeping immune cells at a relative distance, effectively creating a time delay between exposures to a pathogen and mounting of an immune response. Therefore, many immune and protective responses within the cornea, such as moistening and nutrition, come from non-local sources, such as the conjunctiva.

The Earth immune system is a controversial proposal, claimed to be a consequence of the Gaia hypothesis. The Gaia hypothesis holds that the entire earth may be considered a single organism (Gaia). As a self-maintaining organism, Earth would possess an immune system of some sort in order to maintain its health.

Some proponents of this speculative concept, for example, hold that humankind can be considered an "infection" of Gaia, and that AIDS is an attempt by this immune system to reject the infection. "Cancer" might be a more accurate term, as humans evolved within Gaia, and are not external invaders. An opposite view is that humankind is Gaia's immune system itself, perhaps evolved to avert future catastrophes such as the Permian and Cretaceous mass extinctions of species.

Nutrition Lipids Health Medicine Biology Health Medical Pharma Hospitality Recreation hearth disease
News:


Related Websites:


Terms of service | About
16